1 |
BRESSER D, PASSERINI S, SCROSATI B. Recent progress and remaining challenges in sulfur-based lithium secondary batteries—A review[J]. Chemical Communications (Cambridge, England), 2013, 49(90): 10545-10562.
|
2 |
SUBRAMANIAN K, ALEXANDER G V, KARTHIK K, et al. A brief review of recent advances in garnet structured solid electrolyte based lithium metal batteries[J]. Journal of Energy Storage, 2021, 33: 102157.
|
3 |
PAN P, ZHANG M M, CHENG Z L, et al. Garnet ceramic fabric-reinforced flexible composite solid electrolyte derived from silk template for safe and long-term stable All-Solid-State lithium metal batteries[J]. Energy Storage Materials, 2022, 47: 279-287.
|
4 |
WANG C H, YANG Y F, LIU X J, et al. Suppression of lithium dendrite formation by using LAGP-PEO (LiTFSI) composite solid electrolyte and lithium metal anode modified by PEO (LiTFSI) in all-solid-state lithium batteries[J]. ACS Applied Materials & Interfaces, 2017, 9(15): 13694-13702.
|
5 |
CHEN S J, NIE Z W, TIAN F F, et al. The influence of surface chemistry on critical current density for garnet electrolyte[J]. Advanced Functional Materials, 2022, 32(23): 2113318.
|
6 |
AFYON S, KRUMEICH F, RUPP J L M. A shortcut to garnet-type fast Li-ion conductors for all-solid state batteries[J]. Journal of Materials Chemistry A, 2015, 3(36): 18636-18648.
|
7 |
ZHANG L, ZHUANG Q C, ZHENG R G, et al. Recent advances of Li7La3Zr2O12-based solid-state lithium batteries towards high energy density[J]. Energy Storage Materials, 2022, 49: 299-338.
|
8 |
LI Z, FU J L, ZHOU X Y, et al. Ionic conduction in polymer-based solid electrolytes[J]. Advanced Science, 2023, https://doi.org/10.1002/advs.202201718.
|
9 |
XUE Z G, HE D, XIE X L. Poly(ethylene oxide)-based electrolytes for lithium-ion batteries[J]. Journal of Materials Chemistry A, 2015, 3(38): 19218-19253.
|
10 |
WAN J Y, XIE J, KONG X, et al. Ultrathin, flexible, solid polymer composite electrolyte enabled with aligned nanoporous host for lithium batteries[J]. Nature Nanotechnology, 2019, 14(7): 705-711.
|
11 |
ZHANG X, LIU T, ZHANG S F, et al. Synergistic coupling between Li6.75La3Zr1.75Ta0.25O12 and poly(vinylidene fluoride) induces high ionic conductivity, mechanical strength, and thermal stability of solid composite electrolytes[J]. Journal of the American Chemical Society, 2017, 139(39): 13779-13785.
|
12 |
ZHANG W Q, NIE J H, LI F, et al. A durable and safe solid-state lithium battery with a hybrid electrolyte membrane[J]. Nano Energy, 2018, 45: 413-419.
|
13 |
MA X N, XU Y L. Efficient anion fluoride-doping strategy to enhance the performance in garnet-type solid electrolyte Li7La3Zr2O12[J]. ACS Applied Materials & Interfaces, 2022, 14(2): 2939-2948.
|
14 |
KIM A, KANG J H, SONG K, et al. Simultaneously improved cubic phase stability and Li-ion conductivity in garnet-type solid electrolytes enabled by controlling the Al occupation sites[J]. ACS Applied Materials & Interfaces, 2022, 14(10): 12331-12339.
|
15 |
WANG Y, WU Y J, WANG Z X, et al. Doping strategy and mechanism for oxide and sulfide solid electrolytes with high ionic conductivity[J]. Journal of Materials Chemistry A, 2022, 10(9): 4517-4532.
|
16 |
RETTENWANDER D, WELZL A, CHENG L, et al. Synthesis, crystal chemistry, and electrochemical properties of Li7-2 xLa3Zr2- xMoxO12(x=0.1-0.4): Stabilization of the cubic garnet polymorph via substitution of Zr4+ by Mo6+[J]. Inorganic Chemistry, 2015, 54(21): 10440-10449.
|
17 |
HAILU MENGESHA T, LEMMA BESHAHWURED S, WU Y S, et al. A polydopamine-modified garnet-based polymer-in-ceramic hybrid solid electrolyte membrane for high-safety lithium metal batteries[J]. Chemical Engineering Journal, 2023, 452: 139340.
|
18 |
CHEN L, LI Y T, LI S P, et al. PEO/garnet composite electrolytes for solid-state lithium batteries: From “ceramic-in-polymer” to “polymer-in-ceramic”[J]. Nano Energy, 2018, 46: 176-184.
|
19 |
LI Z, HUANG H-M, ZHU J-K, et al. Ionic Conduction in Composite Polymer Electrolytes: Case of PEO: Ga-LLZO Composites[J]. ACS Appl. Mater. Interfaces, 2019, 11(1): 784-791.
|
20 |
WANG X, ZHAI H W, QIE B Y, et al. Rechargeable solid-state lithium metal batteries with vertically aligned ceramic nanoparticle/polymer composite electrolyte[J]. Nano Energy, 2019, 60: 205-212.
|
21 |
ZHANG J X, ZHAO N, ZHANG M, et al. Flexible and ion-conducting membrane electrolytes for solid-state lithium batteries: Dispersion of garnet nanoparticles in insulating polyethylene oxide[J]. Nano Energy, 2016, 28: 447-454.
|
22 |
WAN Z P, LEI D N, YANG W, et al. Low resistance-integrated all-solid-state battery achieved by Li7La3Zr2O12 nanowire upgrading polyethylene oxide (PEO) composite electrolyte and PEO cathode binder[J]. Advanced Functional Materials, 2019, 29(1): 1805301.
|
23 |
HUO H Y, CHEN Y, LUO J, et al. Rational design of hierarchical “ceramic-in-polymer” and “polymer-in-ceramic” electrolytes for dendrite-free solid-state batteries[J]. Advanced Energy Materials, 2019, 9(17): 1804004.
|
24 |
ZHANG J J, ZANG X, WEN H J, et al. High-voltage and free-standing poly(propylene carbonate)/Li6.75La3Zr1.75Ta0.25O12 composite solid electrolyte for wide temperature range and flexible solid lithium ion battery[J]. Journal of Materials Chemistry A, 2017, 5(10): 4940-4948.
|
25 |
ZHENG J, HU Y Y. New insights into the compositional dependence of Li-ion transport in polymer-ceramic composite electrolytes[J]. ACS Applied Materials & Interfaces, 2018, 10(4): 4113-4120.
|
26 |
ZHENG J, TANG M X, HU Y Y. Lithium ion pathway within Li7La3Zr2O12-polyethylene oxide composite electrolytes[J]. Angewandte Chemie International Edition, 2016, 55(40): 12538-12542.
|
27 |
JIANG T L, HE P G, WANG G X, et al. Lithium batteries: Solvent-free synthesis of thin, flexible, nonflammable garnet-based composite solid electrolyte for all-solid-state lithium batteries[J]. Advanced Energy Materials, 2020, 10(12): 2070052.
|