1 |
STEPHAN A K. The age of Li-ion batteries[J]. Joule, 20193(11): 2583-2584.
|
2 |
LI M, LU J. Lattice strain blights lithium-ion batteries[J]. Nature, 2022: doi: 10.1038/d41586-022-01179-z.
|
3 |
WINTER M, BARNETT B, XU K. Before Li ion batteries[J]. Chemical Reviews, 2018, 118(23): 11433-11456.
|
4 |
LI M, LU J. Cobalt in lithium-ion batteries[J]. Science, 2020, 367(6481): 979-980.
|
5 |
MANTHIRAM A. Electrical energy storage: Materials challenges and prospects[J]. MRS Bulletin, 2016, 41(8): 624-631.
|
6 |
CHU S Y, GUO S H, ZHOU H S. Advanced cobalt-free cathode materials for sodium-ion batteries[J]. Chemical Society Reviews, 2021, 50(23): 13189-13235.
|
7 |
HWANG J Y, MYUNG S T, SUN Y K. Sodium-ion batteries: Present and future[J]. Chemical Society Reviews, 2017, 46(12): 3529-3614.
|
8 |
VAALMA C, BUCHHOLZ D, WEIL M, et al. A cost and resource analysis of sodium-ion batteries[J]. Nature Reviews Materials, 2018, 3(4): 1-11.
|
9 |
LAO M M, ZHANG Y, LUO W B, et al. Alloy-based anode materials toward advanced sodium-ion batteries[J]. Advanced Materials, 2017: doi: 10.1002/adma.201700622.
|
10 |
LI L, ZHENG Y, ZHANG S L, et al. Recent progress on sodium ion batteries: Potential high-performance anodes[J]. Energy & Environmental Science, 2018, 11(9): 2310-2340.
|
11 |
HUANG Y, WANG Z, GUAN M, et al. Sodium-ion batteries: Toward rapid-charging sodium-ion batteries using hybrid-phase molybdenum sulfide selenide-based anodes[J]. Advanced Materials, 2020: doi: 10.1002/adma.202003534.
|
12 |
CAO L, GAO X W, ZHANG B, et al. Bimetallic sulfide Sb2S3@FeS2 hollow nanorods as high-performance anode materials for sodium-ion batteries[J]. ACS Nano, 2020, 14(3): 3610-3620.
|
13 |
LI C C, WANG B, CHEN D, et al. Topotactic transformation synthesis of 2D ultrathin GeS2 nanosheets toward high-rate and high-energy-density sodium-ion half/full batteries[J]. ACS Nano, 2020, 14(1): 531-540.
|
14 |
CHEN L, LUO N J, HUANG S P, et al. Metal-organic framework-derived hollow structure CoS2/nitrogen-doped carbon spheres for high-performance lithium/sodium ion batteries[J]. Chemical Communications, 2020, 56(28): 3951-3954.
|
15 |
HUANG P F, YING H J, ZHANG S L, et al. Multidimensional synergistic architecture of Ti3C2 MXene/CoS2@N-doped carbon for sodium-ion batteries with ultralong cycle lifespan[J]. Chemical Engineering Journal, 2022, 429: doi: 10.1016/j.cej.2021.132396.
|
16 |
LI Z W, FENG W J, LIN Y Q, et al. Flaky CoS2 and graphene nanocomposite anode materials for sodium-ion batteries with improved performance[J]. RSC Advances, 2016, 6(74): 70632-70637.
|
17 |
LIU X, ZHANG K, LEI K X, et al. Facile synthesis and electrochemical sodium storage of CoS2 micro/nano-structures[J]. Nano Research, 2016, 9(1): 198-206.
|
18 |
MIAO W F, ZHANG Y, LI H T, et al. ZIF-8/ZIF-67-derived 3D amorphous carbon-encapsulated CoS/NCNTs supported on CoS-coated carbon nanofibers as an advanced potassium-ion battery anode[J]. Journal of Materials Chemistry A, 2019, 7(10): 5504-5512.
|
19 |
PAN Y L, CHENG X D, GONG L L, et al. Double-morphology CoS2 anchored on N-doped multichannel carbon nanofibers as high-performance anode materials for Na-ion batteries[J]. ACS Applied Materials & Interfaces, 2018, 10(37): 31441-31451.
|
20 |
PAN Y L, CHENG X D, HUANG Y J, et al. CoS2 nanoparticles wrapping on flexible freestanding multichannel carbon nanofibers with high performance for Na-ion batteries[J]. ACS Applied Materials & Interfaces, 2017, 9(41): 35820-35828.
|
21 |
ABDUL RAZZAQ A, YUAN X T, CHEN Y J, et al. Anchoring MOF-derived CoS2 on sulfurized polyacrylonitrile nanofibers for high areal capacity lithium-sulfur batteries[J]. Journal of Materials Chemistry A, 2020, 8(3): 1298-1306.
|
22 |
SHADIKE Z, CAO M H, DING F, et al. Improved electrochemical performance of CoS2-MWCNT nanocomposites for sodium-ion batteries[J]. Chemical Communications, 2015, 51(52): 10486-10489.
|
23 |
SONG Z Y, WANG G, CHEN Y, et al. Construction of hierarchical NiS@C/rGO heterostructures for enhanced sodium storage[J]. Chemical Engineering Journal, 2022, 435: doi: 10.1016/j.cej.2022.134633.
|
24 |
TAO M L, DU G Y, YANG T T, et al. MXene-derived three-dimensional carbon nanotube network encapsulate CoS2 nanoparticles as an anode material for solid-state sodium-ion batteries[J]. Journal of Materials Chemistry A, 2020, 8(6): 3018-3026.
|
25 |
WANG P Y, SUN S M, JIANG Y, et al. Hierarchical microtubes constructed by MoS2 nanosheets with enhanced sodium storage performance[J]. ACS Nano, 2020, 14(11): 15577-15586.
|
26 |
WANG J J, YUE X Y, XIE Z K, et al. MOFs-derived transition metal sulfide composites for advanced sodium ion batteries[J]. Energy Storage Materials, 2021, 41: 404-426.
|
27 |
ZHANG N, YANG Y, FENG X R, et al. Sulfur encapsulation by MOF-derived CoS2 embedded in carbon hosts for high-performance Li-S batteries[J]. Journal of Materials Chemistry A, 2019, 7(37): 21128-21139.
|
28 |
ZHANG W M, YUE Z W, WANG Q M, et al. Carbon-encapsulated CoS2 nanoparticles anchored on N-doped carbon nanofibers derived from ZIF-8/ZIF-67 as anode for sodium-ion batteries[J]. Chemical Engineering Journal, 2020, 380: doi: 10.1016/j.cej.2019.122548.
|
29 |
XIAO F P, YANG X M, WANG D H, et al. Metal-organic framework derived CoS2 wrapped with nitrogen-doped carbon for enhanced lithium/sodium storage performance[J]. ACS Applied Materials & Interfaces, 2020, 12(11): 12809-12820.
|
30 |
LIN D M, SHI X L, LI K K, et al. Ether-induced phase transition toward stabilized layered structure of MoS2 with extraordinary sodium storage performance[J]. ACS Materials Letters, 2022: doi: 10.1021/acsmaterialslett.2c00262.
|
31 |
TAO H W, ZHOU M, WANG R X, et al. TiS2 as an advanced conversion electrode for sodium-ion batteries with ultra-high capacity and long-cycle life[J]. Advanced Science (Weinheim, Baden-Wurttemberg, Germany), 2018, 5(11): doi: 10.1002/advs.201801021.
|
32 |
WANG Z Y, DONG K Z, WANG D, et al. A nanosized SnSb alloy confined in N-doped 3D porous carbon coupled with ether-based electrolytes toward high-performance potassium-ion batteries[J]. Journal of Materials Chemistry A, 2019, 7(23): 14309-14318.
|
33 |
LI Y, WU F, LI Y, et al. Ether-based electrolytes for sodium ion batteries[J]. Chemical Society Reviews, 2022, 51(11): 4484-4536.
|
34 |
YIN X C, REN Y, WU L B, et al. Construction of polysulfides defense system for greatly improving the long cycle life of metal sulfide anodes for sodium-ion batteries[J]. Journal of Energy Chemistry, 2022, 71: 210-217.
|
35 |
HU M X, JU Z Y, BAI Z C, et al. Revealing the critical factor in metal sulfide anode performance in sodium-ion batteries: An investigation of polysulfide shuttling issues[J]. Small Methods, 2019: doi:10.1002/smtd.201900673.
|
36 |
YIN X C, REN Y, GUO S, et al. Investigating the origin of the enhanced sodium storage capacity of transition metal sulfide anodes in ether-based electrolytes[J]. Advanced Functional Materials, 2022: doi:10.1002/adfm.202110017
|
37 |
SHI X, SONG H H, LI A, et al. Sn-Co nanoalloys embedded in porous N-doped carbon microboxes as a stable anode material for lithium-ion batteries[J]. Journal of Materials Chemistry A, 2017, 5(12): 5873-5879.
|
38 |
ZHAO S Y, JIA H N, WANG Y, et al. Engineering monodispersed 2 nm Sb2S3 particles embedded in a porphyrin-based MOF-derived mesoporous carbon network via an adsorption method to construct a high-performance sodium-ion battery anode[J]. Dalton Transactions, 2022, 51(33): 12524-12531.
|
39 |
ZHANG S P, WANG G, ZHANG Z L, et al. 3D graphene networks encapsulated with ultrathin SnS Nanosheets@Hollow mesoporous carbon spheres nanocomposite with pseudocapacitance-enhanced lithium and sodium storage kinetics[J]. Small (Weinheim an Der Bergstrasse, Germany), 2019, 15(14): doi: 10.1002/smll.201900565.
|
40 |
ZHAO S M, LI J L, CHEN H X, et al. Synthesis of Bi2S3/MoS2 nanorods and their enhanced electrochemical performance for aluminum ion batteries[J]. Journal of Electrochemical Energy Conversion and Storage, 2020, 17(3): doi:10.1115/1.4045784.
|