1 |
霍振星, 王敏鑫, 石丽娜, 等. 电动汽车及充电设施发展现状分析与展望[J]. 农电管理, 2023(1): 28-30.
|
|
HUO Z X, WANG M X, SHI L N, et al. Analysis and prospect of development status of electric cars and charging equipment[J]. Rural Power Management, 2023(1): 28-30.
|
2 |
林虹, 曹开颜. 2020年我国电动自行车电池市场现状与展望[J]. 电池工业, 2020, 24(1): 47-49.
|
|
LIN H, CAO K Y. The Current situation and development of electric bicycle battery market in China in 2020[J]. Chinese Battery Industry, 2020, 24(1): 47-49.
|
3 |
2022中国两轮电动车行业白皮书[R/OL]. 2022-04. https://www.seatone.net.cn/uploads/tan/972.pdf.
|
4 |
CAMARGOS P H, DOS SANTOS P H J, DOS SANTOS I R, et al. Perspectives on Li-ion battery categories for electric vehicle applications: A review of state of the art[J]. International Journal of Energy Research, 2022, 46(13): 19258-19268.
|
5 |
何姣. 我国电池储能电站发展的现状、问题及建议[J]. 新能源科技, 2021(6): 30-33.
|
|
HE J. Present situation, problems and suggestions on the development of battery energy storage power stations in China[J]. New Energy Technology, 2021(6): 30-33.
|
6 |
黄学杰. 锂离子电池助力电动自行车产业发展[J]. 中国自行车, 2010(5): 52-54.
|
|
HUANG X J. Lithium-ion battery helps the development of electric bicycle industry[J]. China Bicycle, 2010(5): 52-54.
|
7 |
况新亮, 刘垂祥, 熊朋. 锂离子电池产业分析及市场展望[J]. 无机盐工业, 2022, 54(8): 12-19, 32.
|
|
KUANG X L, LIU C X, XIONG P. Industry analysis and market prospect of lithium ion battery[J]. Inorganic Chemicals Industry, 2022, 54(8): 12-19, 32.
|
8 |
孙宜听, 宗梦然, 黄强, 等. 软包和硬壳磷酸铁锂单体电池过充热传播研究[J]. 电力工程技术, 2020, 39(6): 191-198, 219.
|
|
SUN Y T, ZONG M R, HUANG Q, et al. Study on overcharge heat transfer of Ferrous lithium phosphate single battery with soft package and hard shell[J]. Electric Power Engineering Technology, 2020, 39(6): 191-198, 219.
|
9 |
GOODENOUGH J B, KIM Y. Challenges for rechargeable Li batteries[J]. Chemistry of Materials, 2010, 22(3): 587-603.
|
10 |
薛钧, 李辉. 浅析电瓶车火灾防范对策[J]. 消防科学与技术, 2017, 36(8): 1174-1176.
|
|
XUE J, LI H. Discussion on fire prevention countermeasures of electric bicycle[J]. Fire Science and Technology, 2017, 36(8): 1174-1176.
|
11 |
潘爱仁, 赵阳. 电瓶车火灾原因调查与防范[J]. 科技创新与应用, 2016(34): 297.
|
|
PAN A R, ZHAO Y. Cause investigation and prevention of battery car fire[J]. Technology Innovation and Application, 2016(34): 297.
|
12 |
朱卫平, 陈国旺, 卫志农, 等. 基于VFFRLS算法的锂电池参数辨识[J]. 电力工程技术, 2023, 42(1): 226-233.
|
|
ZHU W P, CHEN G W, WEI Z N, et al. Parameter identification of lithium battery based on VFFRLS algorithm[J]. Electric Power Engineering Technology, 2023, 42(1): 226-233.
|
13 |
唐传雨, 韩华春, 史明明, 等. 基于DEKF的储能电池系统SOC估计方法研究[J]. 电力工程技术, 2021, 40(3): 7-14.
|
|
TANG C Y, HAN H C, SHI M M, et al. Research on SOC estimation method of energy storage battery system based on DEKF[J]. Electric Power Engineering Technology, 2021, 40(3): 7-14.
|
14 |
韩雪冰. 车用锂离子电池机理模型与状态估计研究[D]. 北京: 清华大学, 2014.
|
|
HAN X B. Study on mechanism model and state estimation of vehicle lithium-ion battery[D]. Beijing: Tsinghua University, 2014.
|
15 |
CHEN C N, CHEN B L, WANG T, et al. Battery health assessment and life prediction in battery management system[C]//2022 3rd International Conference on Electronic Communication and Artificial Intelligence (IWECAI). January 14-16, 2022, Zhuhai, China. IEEE, 2022: 87-90.
|
16 |
REN D S, LU L G, SHEN P, et al. Battery remaining discharge energy estimation based on prediction of future operating conditions[J]. Journal of Energy Storage, 2019, 25: 100836.
|
17 |
OUYANG M G, LIU G M, LU L G, et al. Enhancing the estimation accuracy in low state-of-charge area: A novel onboard battery model through surface state of charge determination[J]. Journal of Power Sources, 2014, 270: 221-237.
|
18 |
XIONG R, HE H W, SUN F C, et al. Model-based state of charge and peak power capability joint estimation of lithium-ion battery in plug-in hybrid electric vehicles[J]. Journal of Power Sources, 2013, 229: 159-169.
|
19 |
ADAIKKAPPAN M, SATHIYAMOORTHY N. Modeling, state of charge estimation, and charging of lithium‐ion battery in electric vehicle: A review[J]. International Journal of Energy Research, 2021, 46(5): 2141-2165.
|
20 |
SALDAÑA G, MARTÍN J, ZAMORA I, et al. Analysis of the current electric battery models for electric vehicle simulation[J]. Energies, 2019, 12(14): 2750.
|
21 |
WAAG W, FLEISCHER C, SAUER D U. Critical review of the methods for monitoring of lithium-ion batteries in electric and hybrid vehicles[J]. Journal of Power Sources, 2014, 258: 321-339.
|
22 |
LIU C H, HU M H, JIN G Q, et al. State of power estimation of lithium-ion battery based on fractional-order equivalent circuit model[J]. Journal of Energy Storage, 2021, 41: 102954.
|
23 |
MASTALI M, VAZQUEZ-ARENAS J, FRASER R, et al. Battery state of the charge estimation using Kalman filtering[J]. Journal of Power Sources, 2013, 239: 294-307.
|
24 |
TELMASRE T, GOSWAMI N, CONCEPCIÓN A, et al. Impedance response simulation strategies for lithium-ion battery models[J]. Current Opinion in Electrochemistry, 2022, 36: 101140.
|
25 |
FLEISCHER C, WAAG W, BAI Z O, et al. Adaptive on-line state-of-available-power prediction of lithium-ion batteries[J]. Journal of Power Electronics, 2013, 13(4): 516-527.
|
26 |
YANG L, YU H, LI J. State of power estimation for lithium-ion battery based on electrochemical model and multiple restrictions[M]. 2022.
|
27 |
XIONG R, HONGWEN H, SUN F C, et al. Online estimation of peak power capability of Li-ion batteries in electric vehicles by a hardware-in-loop approach[J]. Energies, 2012, 5(5): 1455-1469.
|
28 |
WAAG W, FLEISCHER C, SAUER D U. On-line estimation of lithium-ion battery impedance parameters using a novel varied-parameters approach[J]. Journal of Power Sources, 2013, 237: 260-269.
|