储能科学与技术 ›› 2023, Vol. 12 ›› Issue (5): 1675-1685.doi: 10.19799/j.cnki.2095-4239.2023.0036
于会群1,2(), 胡哲豪1(), 彭道刚1,2, 孙浩益1
收稿日期:
2023-01-30
修回日期:
2023-02-19
出版日期:
2023-05-05
发布日期:
2023-05-29
通讯作者:
胡哲豪
E-mail:yuhuiqun@shiep.edu.cn;huzhehao4@126.com
作者简介:
于会群(1978—),女,博士,副教授,研究方向为智能发电技术、储能技术与应用,E-mail:yuhuiqun@shiep.edu.cn;
基金资助:
Huiqun YU1,2(), Zhehao HU1(), Daogang PENG1,2, Haoyi SUN1
Received:
2023-01-30
Revised:
2023-02-19
Online:
2023-05-05
Published:
2023-05-29
Contact:
Zhehao HU
E-mail:yuhuiqun@shiep.edu.cn;huzhehao4@126.com
摘要:
新能源汽车产业迅速发展,动力电池将在更迭换代中迎来退役潮,梯次利用技术能够在最大化利用动力电池全寿命周期的同时缓解回收压力及环境污染问题。为进一步完善梯次利用绿色可持续发展体系,本文研究了当前梯次利用相关政策、标准及应用场景,并从电池回收与储能系统梯次利用两方面,分别对电池回收模式、老化原理、检测、筛选、状态估计、容量配置、控制策略等技术研究展开讨论。最后结合国内形势,探讨了退役动力电池梯次利用所面临的问题与挑战,并针对关键技术的突破与产业体系的形成提出建设性意见,以期为梯次利用产业布局提供助力。
中图分类号:
于会群, 胡哲豪, 彭道刚, 孙浩益. 退役动力电池回收及其在储能系统中梯次利用关键技术[J]. 储能科学与技术, 2023, 12(5): 1675-1685.
Huiqun YU, Zhehao HU, Daogang PENG, Haoyi SUN. Key technologies for retired power battery recovery and its cascade utilization in energy storage systems[J]. Energy Storage Science and Technology, 2023, 12(5): 1675-1685.
表1
梯次利用相关标准"
标准号 | 标准名称 | 标准涉及内容 |
---|---|---|
GB/T 33598—2017 | 《车用动力电池回收利用拆解规范》 | 拆解工作的术语和定义、总体要求、作业程序、暂存和管理要求 |
GB/T 34014—2017 | 《汽车动力蓄电池编码规则》[ | 电池编码对象、代码结构组成及表示方法、数据载体 |
GB/T 34015—2017 | 《车用动力电池回收利用 余能检测》 | 余能检测的术语和定义、符号、检测要求、流程及方法 |
GB/T 38698.1—2020 | 《车用动力电池回收利用管理规范 第1部分:包装运输》[ | 回收利用包装运输的术语和定义、分类、包装、运输、标志及一般要求 |
GB/T 34015.2—2020 | 《车用动力电池回收利用梯次利用 第2部分:拆卸要求》[ | 电池拆卸的术语和定义、总体要求、作业要求、暂存和管理要求 |
GB/T 34015.3—2021 | 《车用动力电池回收利用梯次利用 第3部分:梯次利用要求》[ | 梯次利用的总体要求、外观及性能要求、梯次利用产品一般要求 |
GB/T 34015.4—2021 | 《车用动力电池回收利用梯次利用 第4部分:梯次利用产品标识》[ | 梯次利用产品标识的构成、标志要求、标示位置、方式及要求 |
表2
国内部分退役动力电池梯次利用案例"
应用场景 | 实施单位 | 项目内容 | 项目规模 |
---|---|---|---|
光储充 充电站 | 长沙矿冶研究院有限责任公司、 长沙市湘行交通新能源有限公司 | 项目位于长沙市格林香山公交站场内,采用电动公交退役后的磷酸铁锂动力蓄电池模组进行系统集成,站内布有光伏发电、充电桩及储能系统,为长沙公交集团电动公交车提供充电保障 | 含梯次利用储能0.2 MW/1.1 MWh |
国网新昌县供电公司 | 项目位于十九峰景区停车场,采用退役电池和“光储充”系统相结合,配备充电站监控系统,为过往车辆和景区电车提供充电 | 含梯次利用储能120 kW/400 kWh | |
储能电站 (调峰调频) | 南方电网综合能源服务公司、 深圳市比克动力电池有限公司 | 我国首个也是全球最大规模新能源汽车动力电池梯次利用的电网侧储能电站,后续将规划探索采用变电站+储能站+光伏充电站+数据中心的方式建设运营,以此实现能源、数据的融合共享 | 总规模约130 MW/260 MWh, 其中含梯次利用储能75 MWh |
国网江苏省电力有限公司南京供电分公司 | 国内首个成功落地的电池整包梯次利用储能项目。项目主要利用B品电池或电动汽车退役电池,用于工商业园区用电负荷的削峰填谷和提供电力辅助服务 | 含梯次利用储能2.15 MW/7.27 MWh | |
通信基站 | 杭州余杭区供电公司 | 增加退役动力电池与原有后备电池共同为白马坑通信站出力,为超山风景区5G信号的覆盖提供了稳定保障 | 电池容量共20 kWh |
中国铁塔股份有限公司 | 公司于各个省市的数十万基站进行梯次利用电池替换铅酸电池试验,并验证了其安全性和技术经济可行性 | 全国累计容量约3 GWh | |
环卫电动车 | 宇通环卫、傲蓝得环保科技、 利威新能源 | 利用退役电池将旗下使用的环卫三轮洒水车、扫街车等低压电动车,集合锂电池组、BMS、云管理平台等功能,开发出梯次利用产品取代现有铅酸电池产品 | — |
1 | 李建林, 李雅欣, 吕超, 等. 退役动力电池梯次利用关键技术及现状分析[J]. 电力系统自动化, 2020, 44(13): 172-183. |
LI J L, LI Y X, LYU C, et al. Key technology and research status of cascaded utilization in decommissioned power battery[J]. Automation of Electric Power Systems, 2020, 44(13): 172-183. | |
2 | 东亚前海证券. 动力电池“退役潮”来临,回收行业景气将至[J]. 汽车与配件, 2022(5): 58-61. |
3 | 谭震, 范茂松, 赵光金, 等. 动力电池梯次利用国家标准体系分析[J]. 电池, 2022, 52(4): 443-446. |
TAN Z, FAN M S, ZHAO G J, et al. Analysis of national standard system for power battery echelon utilization[J]. Battery Bimonthly, 2022, 52(4): 443-446. | |
4 | 国家质量监督检验检疫总局, 中国国家标准化管理委员会. 车用动力电池回收利用 拆解规范: GB/T 33598—2017[S]. 北京: 中国标准出版社, 2017. |
General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Standardization Administration of the People's Republic of China. Recycling of traction battery used in electric vehicle—Dismantling specification: GB/T 33598—2017[S]. Beijing: Standards Press of China, 2017. | |
5 | 国家质量监督检验检疫总局, 中国国家标准化管理委员会. 车用动力电池回收利用 余能检测: GB/T 34015—2017[S]. 北京: 中国标准出版社, 2017. |
General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Standardization Administration of the People's Republic of China. Recycling of traction battery used in electric vehicle—Test of residual capacity: GB/T 34015—2017[S]. Beijing: Standards Press of China, 2017. | |
6 | 工业和信息化部, 科技部, 生态环境部, 等. 工业和信息化部, 科技部, 生态环境部, 商务部, 市场监管总局关于印发《新能源汽车动力蓄电池梯次利用管理办法》的通知[J]. 中华人民共和国国务院公报, 2021(33): 89-91. |
7 | 市场监管总局(标准委)发布一批公共安全、绿色可持续、高新技术等领域重要国家标准[EB/OL]. [2021-09-17]. https://www.samr.gov.cn/xw/zj/202109/t20210917_334831.html. |
8 | 财政部, 税务总局. 关于完善资源综合利用增值税政策的公告[J]. 资源再生, 2021(12): 52-54. |
CAI Z B, SHUI W. Announcement on improving the value-added tax policy for comprehensive utilization of resources[J]. Resource Recycling, 2021(12): 52-54. | |
9 | 工信部等八部门印发《关于加快推动工业资源综合利用的实施方案》[J]. 资源再生, 2022(2): 44-47. |
The Ministry of Industry and Information Technology and other eight departments issued the Implementation Plan on Accelerating the Comprehensive Utilization of Industrial Resources[J]. Resource Recycling, 2022(2): 44-47. | |
10 | 工信部等六部门关于推动能源电子产业发展的指导意见[EB/OL].[2023-01-03]. http://www.gov.cn/zhengce/zhengceku/2023-01/17/content_5737584.htm. |
11 | 国家质量监督检验检疫总局, 中国国家标准化管理委员会. 汽车动力蓄电池编码规则: GB/T 34014—2017[S]. 北京: 中国标准出版社, 2017. |
General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Standardization Administration of the People's Republic of China. Coding regulation for automotive traction battery: GB/T 34014—2017[S]. Beijing: Standards Press of China, 2017. | |
12 | 国家市场监督管理总局, 国家标准化管理委员会. 车用动力电池回收利用 管理规范 第1部分:包装运输: GB/T 38698.1—2020[S]. 北京: 中国标准出版社, 2020. |
State Administration for Market Regulation, Standardization Administration of the People's Republic of China. Recycling of traction battery used in electric vehicle—Management specification—Part 1: Packing and transporting: GB/T 38698.1—2020[S]. Beijing: Standards Press of China, 2020. | |
13 | 国家市场监督管理总局, 国家标准化管理委员会. 车用动力电池回收利用 梯次利用 第2部分:拆卸要求: GB/T 34015.2—2020[S]. 北京: 中国标准出版社, 2020. |
State Administration for Market Regulation, Standardization Administration of the People's Republic of China. Recycling of traction battery used in electric vehicle—Echelon use—Part 2: Removing requirements: GB/T 34015.2—2020[S]. Beijing: Standards Press of China, 2020. | |
14 | 国家市场监督管理总局, 国家标准化管理委员会. 车用动力电池回收利用 梯次利用 第3部分:梯次利用要求: GB/T 34015.3—2021[S]. 北京: 中国标准出版社, 2021. |
State Administration for Market Regulation, Standardization Administration of the People's Republic of China. Recovery of traction battery used in electric vehicle—Echelon use—Part 3: Echelon using requirement: GB/T 34015.3—2021[S]. Beijing: Standards Press of China, 2021. | |
15 | 国家市场监督管理总局, 国家标准化管理委员会. 车用动力电池回收利用 梯次利用 第4部分:梯次利用产品标识: GB/T 34015.4—2021[S]. 北京: 中国标准出版社, 2021. |
State Administration for Market Regulation, Standardization Administration of the People's Republic of China. Recovery of traction battery used in electric vehicle—Echelon use—Part 4: Labels for echelon used battery products: GB/T 34015.4—2021[S]. Beijing: Standards Press of China, 2021. | |
16 | 刘若桐, 李建林, 吕喆, 等. 退役动力电池应用潜力分析[J]. 电气技术, 2021, 22(8): 1-9. |
LIU R T, LI J L, LÜ Z, et al. Application potential analysis of decommissioned power batteries[J]. Electrical Engineering, 2021, 22(8): 1-9. | |
17 | 褚兵, 杨厚东. 浅谈退役动力电池综合利用方法和发展路径[J]. 电子元器件与信息技术, 2022, 6(1): 110-111. |
CHU B, YANG H D. Discussion on comprehensive utilization method and development path of retired power batteries[J]. Electronic Components and Information Technology, 2022, 6(1): 110-111. | |
18 | 李梦雅. 不确定环境下面向电动车废旧电池的逆向物流网络构建研究[D]. 上海: 东华大学, 2014. |
LI M Y. Research on the construction of reverse logistics network for waste batteries of electric vehicles in uncertain environment[D]. Shanghai: Donghua University, 2014. | |
19 | 陈光. 动力锂电池闭环供应链回收模式研究[D]. 北京: 中国地质大学(北京), 2020. |
CHEN G. Research on recovery mode of closed-loop supply chain of power lithium battery[D]. Beijing: China University of Geosciences, 2020. | |
20 | 王丹. 北京市电动汽车退役电池逆向物流网络优化研究[D]. 北京: 华北电力大学(北京), 2020. |
WANG D. Research on optimization of reverse logistics network for retired batteries of electric vehicles in Beijing[D]. Beijing: North China Electric Power University, 2020. | |
21 | 梁思凡. 梯次利用场景下动力电池不同回收模式网络构建研究[D]. 北京: 北京交通大学, 2021. |
LIANG S F. Research on the network construction of different recovery modes of power battery in cascade utilization scenarios[D]. Beijing: Beijing Jiaotong University, 2021. | |
22 | 刘子文. 不确定条件下电动汽车动力电池回收网络建模与优化[D]. 北京: 华北电力大学(北京), 2021. |
LIU Z W. Modeling and optimization of electric vehicle battery recovery network under uncertainty[D]. Beijing: North China Electric Power University, 2021. | |
23 | 周兴建, 黎继子, 李菲, 等. 基于Blockchain的新能源汽车动力电池回收供应链模式[J/OL]. 计算机集成制造系统, 1-15[2022-03-15]. http://kns.cnki.net/kcms/detail/11.5946.TP.20220314.1252.026.html. |
ZHOU X J, LI J Z, LI F, et al. Power battery recycling supply chain model for new energy vehicles based on Blockchain[J/OL]. Computer Integrated Manufacturing Systems, 1-15[2022-03-15]. http://kns.cnki.net/kcms/detail/11.5946.TP.20220314.1252.026.html. | |
24 | 刘先庆, 王长宏, 吴婷婷. 锂离子电池老化机理及综合利用综述[J]. 电池, 2022, 52(2): 223-227. |
LIU X Q, WANG C H, WU T T. Review of aging mechanism and comprehensive use of Li-ion battery[J]. Battery Bimonthly, 2022, 52(2): 223-227. | |
25 | JIANG X, CHEN Y, MENG X, et al. The impact of electrode with carbon materials on safety performance of lithium-ion batteries: A review[J]. Carbon: An International Journal Sponsored by the American Carbon Society, 2022(191): 448-470. |
26 | HU X S, DENG X C, WANG F, et al. A review of second-life lithium-ion batteries for stationary energy storage applications[J]. Proceedings of the IEEE, 2022, 110(6): 735-753. |
27 | 余鹏. 电动汽车用动力锂离子电池老化机理与建模研究[D]. 绵阳: 西南科技大学, 2022. |
YU P. Study on aging mechanism and modeling of power lithium-ion battery for electric vehicle[D]. Mianyang: Southwest University of Science and Technology, 2022. | |
28 | 纪常伟, 潘帅, 汪硕峰, 等. 动力锂离子电池老化速率影响因素的实验研究[J]. 北京工业大学学报, 2020, 46(11): 1272-1282. |
JI C W, PAN S, WANG S F, et al. Experimental study on effect factors of aging rate for power lithium-ion batteries[J]. Journal of Beijing University of Technology, 2020, 46(11): 1272-1282. | |
29 | 孙丙香, 任鹏博, 陈育哲, 等. 锂离子电池在不同区间下的衰退影响因素分析及任意区间的老化趋势预测[J]. 电工技术学报, 2021, 36(3): 666-674. |
SUN B X, REN P B, CHEN Y Z, et al. Analysis of influencing factors of degradation under different interval stress and prediction of aging trend in any interval for lithium-ion battery[J]. Transactions of China Electrotechnical Society, 2021, 36(3): 666-674. | |
30 | YANG X G, LENG Y J, ZHANG G S, et al. Modeling of lithium plating induced aging of lithium-ion batteries: Transition from linear to nonlinear aging[J]. Journal of Power Sources, 2017, 360: 28-40. |
31 | 钱艳婷, 韩旭来, 王红美. 应用在储能系统的退役动力电池梯次利用分析[J]. 中国高新科技, 2022(6): 105-108. |
QIAN Y T, HAN X L, WANG H M. Step utilization analysis of retired power battery applied in energy storage system[J]. China High and New Technology, 2022(6): 105-108. | |
32 | 王苏杭, 李建林. 退役动力电池梯次利用研究进展[J]. 分布式能源, 2021, 6(2): 1-7. |
WANG S H, LI J L. Research progress on echelon utilization of retired power batteries[J]. Distributed Energy, 2021, 6(2): 1-7. | |
33 | 高震, 张新慧, 颜勇, 等. 退役锂离子电池梯次利用状态区间划分[J]. 电池, 2021, 51(2): 209-213. |
GAO Z, ZHANG X H, YAN Y, et al. Division of echelon utilization status interval of retired Li-ion battery[J]. Battery Bimonthly, 2021, 51(2): 209-213. | |
34 | 肖曦, 田培根, 于璐, 等. 动力电池梯次利用储能系统电热安全研究现状及展望[J]. 电气工程学报, 2022, 17(1): 206-224. |
XIAO X, TIAN P G, YU L, et al. Status and prospect of safety studies of cascade power battery energy storage system[J]. Journal of Electrical Engineering, 2022, 17(1): 206-224. | |
35 | ZHANG Y, ZHOU Z K, YANG X C, et al. A novel screening approach based on neural network for the second usage of retired lithiumion batteries[C]//2020 Chinese Automation Congress (CAC). November 6-8, 2020, Shanghai, China. IEEE, 2021: 1193-1197. |
36 | 魏梓轩, 韩晓娟, 李炫. 基于深度神经网络的梯次利用电池健康状态评估[J]. 太阳能学报, 2022, 43(5): 518-524. |
WEI Z X, HAN X J, LI X. State of health assessment for echelon utilization batteries based on deep neural network[J]. Acta Energiae Solaris Sinica, 2022, 43(5): 518-524. | |
37 | 于璐, 张辉, 田培根, 等. 一种退役动力电池梯次利用储能系统安全评估方法[J]. 太阳能学报, 2022, 43(5): 446-453. |
YU L, ZHANG H, TIAN P G, et al. A battery safety evaluation method for reuse of retired power battery in energy storage system[J]. Acta Energiae Solaris Sinica, 2022, 43(5): 446-453. | |
38 | 柴建勇, 侯恩广, 李岳炀. 基于自适应卡尔曼滤波的梯次电池荷电状态估算[J]. 济南大学学报(自然科学版), 2021, 35(2): 165-169. |
CHAI J Y, HOU E G, LI Y Y. State of charge estimation for cascade batteries based on adaptive Kalman filtering[J]. Journal of University of Jinan (Science and Technology), 2021, 35(2): 165-169. | |
39 | 王萍, 彭香园, 程泽. 基于DTV-IGPR模型的锂离子电池SOH估计方法[J]. 汽车工程, 2021, 43(11): 1710-1719. |
WANG P, PENG X Y, CHENG Z. SOH estimation method for lithium-ion batteries based on DTV-IGPR model[J]. Automotive Engineering, 2021, 43(11): 1710-1719. | |
40 | 骆凡, 黄海宏, 王海欣. 基于电化学阻抗谱的退役动力电池荷电状态和健康状态快速预测[J]. 仪器仪表学报, 2021, 42(9): 172-180. |
LUO F, HUANG H H, WANG H X. Rapid prediction of the state of charge and state of health of decommissioned power batteries based on electrochemical impedance spectroscopy[J]. Chinese Journal of Scientific Instrument, 2021, 42(9): 172-180. | |
41 | 耿萌萌, 惠东, 刘汉民, 等. 退役三元电池健康状态在线估算方法研究[J]. 电源技术, 2022, 46(3): 262-266. |
GENG M M, HUI D, LIU H M, et al. Research on online estimation method of health state of retired ternary battery[J]. Chinese Journal of Power Sources, 2022, 46(3): 262-266. | |
42 | 王萍, 弓清瑞, 张吉昂, 等. 一种基于数据驱动与经验模型组合的锂电池在线健康状态预测方法[J]. 电工技术学报, 2021, 36(24): 5201-5212. |
WANG P, GONG Q R, ZHANG J, et al. An online state of health prediction method for lithium batteries based on combination of data-driven and empirical model[J]. Transactions of China Electrotechnical Society, 2021, 36(24): 5201-5212. | |
43 | 徐裴行. 锂离子动力电池荷电状态与健康状态联合估计算法研究[D]. 南宁: 广西大学, 2022. |
XU P X. Research on joint estimation algorithm of state of charge and health of lithium-ion power battery[D]. Nanning: Guangxi University, 2022. | |
44 | 李建林, 李雅欣, 吕超, 等. 碳中和目标下退役电池筛选聚类关键技术研究[J]. 电网技术, 2022, 46(2): 429-441. |
LI J L, LI Y X, LÜ C, et al. Key technology of retired batteries' screening and clustering under target of carbon neutrality[J]. Power System Technology, 2022, 46(2): 429-441. | |
45 | 薛费青. 电动汽车退役动力电池状态评估及梯次利用关键技术研究[D]. 杭州: 浙江科技学院, 2022. |
XUE F Q. Research on state evaluation and key technologies of cascade utilization of retired power battery of electric vehicle[D]. Hangzhou: Zhejiang University of Science & Technology, 2022. | |
46 | 王璐. 退役锂离子电池分选与重组的关键技术研究[D]. 太原: 中北大学, 2022. |
WANG L. Research on key technologies of separation and reorganization of retired lithium ion batteries[D]. Taiyuan: North University of China, 2022. | |
47 | 马速良, 李建林, 李雅欣, 等. 面向电池梯次利用筛选需求的定制化聚类优化方法[J]. 中国电机工程学报, 2022, 42(17): 6208-6220. |
MA S L, LI J L, LI Y X, et al. Customized clustering optimization method for battery cascade utilization screening requirements[J]. Proceedings of the CSEE, 2022, 42(17): 6208-6220. | |
48 | 王存, 袁智勇, 王亦伟, 等. 退役动力电池梯次利用关键技术概述[J]. 新能源进展, 2021, 9(4): 327-341. |
WANG C, YUAN Z Y, WANG Y W, et al. Overview of key technologies for echelon utilization of decommissioned power batteries[J]. Advances in New and Renewable Energy, 2021, 9(4): 327-341. | |
49 | 王帅, 尹忠东, 郑重, 等. 电池单体参数不一致对电池模组性能影响研究[J]. 电测与仪表, 2020, 57(10): 76-82, 107. |
WANG S, YIN Z D, ZHENG Z, et al. The influence of cell parameters inconsistency on the performance of different topological battery modules[J]. Electrical Measurement & Instrumentation, 2020, 57(10): 76-82, 107. | |
50 | 韩元昭. 不同拓扑下锂电池不一致性对输出特性影响的研究[D]. 北京: 华北电力大学(北京), . |
HAN Y Z. Study on the influence of inconsistency of lithium batteries on output characteristics under different topologies[D]. Beijing: North China Electric Power University, . | |
51 | 宋旬. 电动汽车串并联动力电池组建模与性能分析研究[D]. 西安: 长安大学, 2019. |
SONG X. Modeling and performance analysis of series-parallel battery pack for electric vehicle[D]. Xi'an: Changan University, 2019. | |
52 | 王质素, 杜欣慧, 陈惠英, 等. 考虑动力电池梯次利用的混合发电厂容量配置[J]. 太阳能学报, 2022, 43(5): 533-540. |
WANG Z S, DU X H, CHEN H Y, et al. Capacity optimization of hybrid power plants considering power battery ladder utilization[J]. Acta Energiae Solaris Sinica, 2022, 43(5): 533-540. | |
53 | 赵伟, 袁锡莲, 周宜行, 等. 考虑运行寿命内经济性最优的梯次电池储能系统容量配置方法[J]. 电力系统保护与控制, 2021, 49(12): 16-24. |
ZHAO W, YUAN X L, ZHOU Y X, et al. Capacity configuration method of a second-use battery energy storage system considering economic optimization within service life[J]. Power System Protection and Control, 2021, 49(12): 16-24. | |
54 | 刘格格. 微电网系统中梯次利用电池混合储能系统能量管理策略[D]. 武汉: 湖北工业大学, 2020. |
LIU G G. Energy management strategy of hybrid energy storage system with cascaded batteries in microgrid system[D]. Wuhan: Hubei University of Technology, 2020. | |
55 | 李笑竹, 陈来军, 杜锡力, 等. 考虑退役动力电池衰减特性的新能源场站群共享储能长期规划配置[J]. 太阳能学报, 2022, 43(5): 499-509. |
LI X Z, CHEN L J, DU X L, et al. Study on long-term planning of shared energy storage at power generation considering attenuation characteristics of retired power batteries[J]. Acta Energiae Solaris Sinica, 2022, 43(5): 499-509. | |
56 | 崔传世, 谢丽蓉, 包洪印, 等. 平抑风电功率波动退役电池储能系统容量配置[J]. 电源技术, 2020, 44(8): 1185-1190. |
CUI C S, XIE L R, BAO H Y, et al. Capacity configuration of retired battery energy storage system for smoothing wind power fluctuations[J]. Chinese Journal of Power Sources, 2020, 44(8): 1185-1190. | |
57 | 郑永强, 吴越, 张盼盼, 等. 基于多分支拓扑的梯次利用储能系统电池同期退役协同控制策略[J]. 储能科学与技术, 2021, 10(6): 2283-2292. |
ZHENG Y Q, WU Y, ZHANG P P, et al. Cooperative control strategy of battery simultaneous decommissioning in cascade energy storage system based on multi-branch topology[J]. Energy Storage Science and Technology, 2021, 10(6): 2283-2292. | |
58 | 王育飞, 叶俊斌, 薛花, 等. 基于改进雨流计数法的梯次利用电池储能系统优化控制[J]. 电力系统自动化, 2022, 46(8): 39-49. |
WANG Y F, YE J B, XUE H, et al. Optimal control for energy storage system with echelon utilization batteries based on improved rain-flow counting method[J]. Automation of Electric Power Systems, 2022, 46(8): 39-49. | |
59 | 马玲, 魏成伟, 谢丽蓉, 等. 基于退役动力电池的风储有功功率协调控制策略[J]. 太阳能学报, 2021, 42(10): 437-443. |
MA L, WEI C W, XIE L R, et al. Coordinated control strategy for wind storage active power of decommissioned power battery[J]. Acta Energiae Solaris Sinica, 2021, 42(10): 437-443. | |
60 | 李笑竹, 陈来军, 杜锡力, 等. 考虑退役动力电池衰减特性的集中式共享储能分级协调控制策略[J]. 太阳能, 2022(5): 87-95. |
LI X Z, CHEN L J, DU X L, et al. Hierarchical coordinated control strategy of centralized shared energy storage considering attenuation characteristics of retired power batteries[J]. Solar Energy, 2022(5): 87-95. | |
61 | 国家能源局综合司关于征求《防止电力生产事故的二十五项重点要求(2022年版)(征求意见稿)》意见的函[EB/OL]. [2022-06-29]. http://www.nea.gov.cn/2022-06/29/c_1310635544.html. |
Letter of the Comprehensive Department of the National Energy Administration on Soliciting opinions on 25 Key Requirements for Preventing Accidents in Power Production (2022 Version) (Draft for Soliciting Opinions)[EB/OL]. [2022-06-29]. http://www.nea.gov.cn/2022-06/29/c_1310635544.html. |
[1] | 吴毅, 孟亚宏, 张怡, 周铁, 刘继, 魏业文. 配电台区电池储能系统优化均衡控制研究[J]. 储能科学与技术, 2023, 12(5): 1655-1663. |
[2] | 刘家亮, 郭翠静, 汪奂伶. 基于火灾事故树模型的储能锂离子电池安全性检测方法与验证[J]. 储能科学与技术, 2023, 12(5): 1695-1704. |
[3] | 李斌, 叶季蕾, 张宇, 时珊珊, 王皓靖, 刘丽丽, 李明哲. 含分布式新能源和机电混合储能接入的微网协调控制策略[J]. 储能科学与技术, 2023, 12(5): 1510-1515. |
[4] | 李兵, 周洪, 王丽平, 冯晗. 全球储能领域高水平基础研究人才结构特征和研究主题分析[J]. 储能科学与技术, 2023, 12(5): 1738-1746. |
[5] | 陈海生, 李泓, 徐玉杰, 陈满, 王亮, 戴兴建, 徐德厚, 唐西胜, 李先锋, 胡勇胜, 马衍伟, 刘语, 苏伟, 王青松, 陈军, 卓萍, 肖立业, 周学志, 冯自平, 蒋凯, 尉海军, 唐永炳, 陈人杰, 刘亚涛, 张宇鑫, 林曦鹏, 郭欢, 张涵, 张长昆, 胡东旭, 容晓晖, 张熊, 金凯强, 姜丽华, 彭煜民, 刘世奇, 朱轶林, 王星, 周鑫, 欧学武, 庞全全, 俞振华, 刘为, 岳芬, 李臻, 宋振, 王志峰, 宋文吉, 林海波, 李杰才, 易斌, 李福军, 潘新慧, 李丽, 马一鸣, 李煌. 2022年中国储能技术研究进展[J]. 储能科学与技术, 2023, 12(5): 1516-1552. |
[6] | 黄渭彬, 张彪, 范金成, 杨伟, 邹汉波, 陈胜洲. ZIF-8复合PEO基固态电解质的制备与改性研究[J]. 储能科学与技术, 2023, 12(4): 1083-1092. |
[7] | 武鸿鑫, 李爱魁, 董存, 孙树敏, 李广磊, 王士柏. 计及调频备用的储能平抑风电功率波动控制策略[J]. 储能科学与技术, 2023, 12(4): 1194-1203. |
[8] | 张玮灵, 古含, 章超, 葛昂, 应元旭. 压缩空气储能技术经济特点及发展趋势[J]. 储能科学与技术, 2023, 12(4): 1295-1301. |
[9] | 管敏渊, 沈建良, 徐国华, 汤舜, 张炜鑫, 曹元成. 锂离子电池储能系统靶向消防装备设计与性能[J]. 储能科学与技术, 2023, 12(4): 1131-1138. |
[10] | 郭霄宇, 于浩, 郑新, 刘雨佳, 左元杰, 张苗苗. 光伏系统液流电池储能优化配置[J]. 储能科学与技术, 2023, 12(4): 1158-1167. |
[11] | 刘海山, 徐宪龙, 魏书洲, 逄亚蕾, 洪烽. 基于提升华北电网考核指标的飞轮储能参与调频划分电量控制策略[J]. 储能科学与技术, 2023, 12(4): 1176-1184. |
[12] | 董文哲, 杨斯泐, 梁宗佑, 陈垠宇. 集成混合储能及RPC的牵引供电系统优化运行[J]. 储能科学与技术, 2023, 12(4): 1185-1193. |
[13] | 虞启辉, 魏志刚, 孙国鑫, 路亮. 基于喷雾换热的压缩空气准等温膨胀系统实验研究及性能分析[J]. 储能科学与技术, 2023, 12(3): 878-888. |
[14] | 康小平, 聂慧慧, 郜敏, 吴凤彪. 电动汽车全生命周期碳排放[J]. 储能科学与技术, 2023, 12(3): 976-984. |
[15] | 刘子豪, 张雪松, 林达, 孙立清, 李正阳, 熊瑞. 基于扩展卡尔曼滤波的储能电池能量和功率状态联合估计方法[J]. 储能科学与技术, 2023, 12(3): 913-922. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||