1 |
JIANG W W, SHI H T, XU X J, et al. MnO stabilized in carbon-veiled multivariate manganese oxides as high-performance cathode material for aqueous Zn-ion batteries[J]. Energy & Environmental Materials, 2021, 4(4): 603-610.
|
2 |
ZHANG X, WANG C S, DONG X L, et al. Laser sintering technique to fabricate nano-Sn/graphite anode for lithium ion batteries: Microstructures and electrochemical properties[J]. Journal of Solid State Chemistry, 2020, 290: 121543.
|
3 |
JIANG W W, WANG H B, XU Z W, et al. A review on manifold synthetic and reprocessing methods of 3D porous graphene-based architecture for Li-ion anode[J]. Chemical Engineering Journal, 2018, 335: 954-969.
|
4 |
李海, 王世星, 李堂鹏, 等. SnO2/石墨烯纳米复合材料的制备及储锂性能[J]. 电源技术, 2021, 45(9): 1115-1118.
|
|
LI H, WANG S X, LI T P, et al. Preparation and lithium storage performance of SnO2/graphene nanocomposite[J]. Chinese Journal of Power Sources, 2021, 45(9): 1115-1118.
|
5 |
SU F Y, HE Y B, LI B H, et al. Could graphene construct an effective conducting network in a high-power lithium ion battery?[J]. Nano Energy, 2012, 1(3): 429-439.
|
6 |
TASDEMIR A, BULUT KOPUKLU B, KIRLIOGLU A C, et al. The influence of nitrogen doping on reduced graphene oxide as highly cyclable Li-ion battery anode with enhanced performance[J]. International Journal of Hydrogen Energy, 2021, 46(21): 11865-11877.
|
7 |
何月德, 刘洪波, 洪泉, 等. 酚醛树脂炭包覆对天然微晶石墨电化学性能的影响[J]. 功能材料, 2013, 44(16): 2397-2400, 2405.
|
|
HE Y D, LIU H B, HONG Q, et al. Investigation on pyrolitic carbon-coated microcrystalline graphite as anode material for Li-ion batteries[J]. Journal of Functional Materials, 2013, 44(16): 2397-2400, 2405.
|
8 |
WANG L P, LECONTE Y, FENG Z X, et al. Novel preparation of N-doped SnO2Nanoparticles via laser-assisted pyrolysis: Demonstration of exceptional lithium storage properties[J]. Advanced Materials, 2017, 29(6): 1603286.
|
9 |
王正慜, 洪庆玲, 王晓慧等. 氮掺杂石墨烯气凝胶锚定RuP纳米粒子用于水合肼氧化辅助产氢(英文)[J/OL]. 物理化学学报.[2023-08-03]. http: //kns.cnki.net/kcms/detail/11.1892.O6.20230411.1846. 002.html.
|
10 |
XU J T, WANG M, WICKRAMARATNE N P, et al. High-performance sodium ion batteries based on a 3D anode from nitrogen-doped graphene foams[J]. Advanced Materials, 2015, 27(12): 2042-2048.
|
11 |
李方坤, 王心怡, 许希军, 等. 铁锗合金负极的限域封装及锂离子存储性能[J]. 无机盐工业, 2022, 54(4): 88-93.
|
|
LI F K, WANG X Y, XU X J, et al. Nanoconfined encapsulation of iron-germanium alloy anode and its lithium ion storage performance[J]. Inorganic Chemicals Industry, 2022, 54(4): 88-93.
|
12 |
余盼, 梁晓怿, 杨全俊, 等. 沥青基球形硬炭的电化学性能研究[J]. 电源技术, 2018, 42(2): 172-174, 222.
|
|
YU P, LIANG X Y, YANG Q J, et al. Study on electrochemical properties of pitch-based spherical hard carbon[J]. Chinese Journal of Power Sources, 2018, 42(2): 172-174, 222.
|
13 |
WANG S H, CHENG Y, XUE H J, et al. Verification of electrolyte decomposition in lithium-ion batteries: Based on the unique bowling-like Sn@C/EG-S composite[J]. Chemical Engineering Journal, 2021, 422: 130520.
|
14 |
ZHANG H Y, HU R Z, LIU Y X, et al. Origin of capacity increasing in a long-life ternary Sn-Fe3O4@Graphite anode for Li-ion batteries[J]. Advanced Materials Interfaces, 2017, 4(12): 1700113.
|