储能科学与技术 ›› 2024, Vol. 13 ›› Issue (1): 157-166.doi: 10.19799/j.cnki.2095-4239.2023.0816
• 高比能二次电池关键材料与先进表征专刊 • 上一篇 下一篇
收稿日期:
2023-11-14
修回日期:
2023-12-02
出版日期:
2024-01-05
发布日期:
2024-01-22
通讯作者:
钟贵明,彭章泉
E-mail:ouyangyimei@dicp.ac.cn;gmzhong@dicp.ac.cn;zqpeng@dicp.ac.cn
作者简介:
欧阳意梅(1999—),女,博士研究生,研究方向为电极材料表界面过程的核磁共振波谱学,E-mail:ouyangyimei@dicp.ac.cn;
基金资助:
Yimei OUYANG(), Mengmeng ZHAO, Guiming ZHONG(), Zhangquan PENG()
Received:
2023-11-14
Revised:
2023-12-02
Online:
2024-01-05
Published:
2024-01-22
Contact:
Guiming ZHONG, Zhangquan PENG
E-mail:ouyangyimei@dicp.ac.cn;gmzhong@dicp.ac.cn;zqpeng@dicp.ac.cn
摘要:
深入认识电化学储能体系(如锂离子电池与锂金属电池等)表界面层的组成与结构,以及相关的物质传递、电荷存储与转移机理,对于开发宽温区、长循环与高倍率电化学储能器件具有重要的理论指导价值。电化学表界面层呈现出稀薄、无序和敏感等特征,直接观测并获取准确信息充满了挑战。在众多表征技术中,核磁共振技术表现出非侵入性和可定量等特点,是物质鉴别以及微观结构与动力学研究的重要手段。利用原位电化学核磁共振技术还能够观测电化学表界面生成的亚稳态中间相或发生的动态结构演变,为电化学储能体系表界面研究提供了独特而关键的见解。本文综述了电化学储能界面的典型核磁共振研究方法,着重介绍了一维与二维核磁共振技术、同位素示踪技术、动态核极化技术和交叉极化技术以及原位电化学核磁共振技术等方法的基本原理与应用策略。通过上述方法在电极与电解质、复合固态电解质等界面的组成结构、离子输运与界面电荷存储机理等电化学储能界面的应用实例,展示了核磁共振技术在电化学储能界面研究中的应用潜力和重要研究成果。
中图分类号:
欧阳意梅, 赵蒙蒙, 钟贵明, 彭章泉. 电化学储能界面的核磁共振谱学研究方法[J]. 储能科学与技术, 2024, 13(1): 157-166.
Yimei OUYANG, Mengmeng ZHAO, Guiming ZHONG, Zhangquan PENG. Nuclear magnetic resonance spectroscopy for probing interfaces in electrochemical energy storage systems[J]. Energy Storage Science and Technology, 2024, 13(1): 157-166.
表 1
核磁共振用于电极电解质界面层研究常用原子核信息"
核磁同位素 | 自旋量子数 | 天然 丰度/% | 四极矩Q/fm2 | 灵敏度 | 应用 | 识别界面物种 | 参考文献 |
---|---|---|---|---|---|---|---|
1H | 1/2 | 99.98 | — | 高 | 化学位移识别界面有机物、含氢无机物 | LiOH、LiH、HCO2Li、CH3OLi、CH3OCO2Li等 | [ |
7Li | 3/2 | 92.41 | -4.01 | 高 | 化学位移和四极耦合用于识别无机相 | LiF、Li2CO3、LiOH、LiH、Li2O等 | [ |
13C | 1/2 | 1.07 | — | 低 | 化学位移识别界面无机相(辅助同位素富集、交叉极化、动态核极化技术提高灵敏度) | CH3OLi、HCO2Li、CH3R、R'CH2R、 CH3OCO2Li、Li2CO3等 | [ |
19F | 1/2 | 100 | — | 高 | 化学位移识别界面含氟无机物、有机物 | LiF、RPO3F、RPO2F2等 | [ |
23Na | 3/2 | 100 | 10.4 | 高 | 化学位移和四极耦合用于识别无机相 | NaF、Na2CO3、NaOH、NaH、Na2O等 | [ |
31P | 1/2 | 100 | — | 高 | 化学位移识别界面含磷无机相 | RPO3F、RPO2F2等 | [ |
1 | 邓诗维, 吴剑芳, 时拓. 固体电解质缺陷化学分析:晶粒体点缺陷及晶界空间电荷层[J]. 储能科学与技术, 2022, 11(3): 939-947. |
DENG S W, WU J F, SHI T. Defect chemistry analysis of solid electrolytes: Point defects in grain bulk and grain boundary space-charge layer[J]. Energy Storage Science and Technology, 2022, 11(3): 939-947. | |
2 | CHAPMAN D L. LI. A contribution to the theory of electrocapillarity[J]. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 1913, 25(148): 475-481. |
3 | GRAHAME D C. The electrical double layer and the theory of electrocapillarity[J]. Chemical Reviews, 1947, 41(3): 441-501. |
4 | PELED E. The electrochemical behavior of alkali and alkaline earth metals in nonaqueous battery systems—the solid electrolyte interphase model[J]. Journal of the Electrochemical Society, 1979, 126(12): 2047-2051. |
5 | KRANZ S, KRANZ T, JAEGERMANN A G, et al. Is the solid electrolyte interphase in lithium-ion batteries really a solid electrolyte? Transport experiments on lithium bis(oxalato)borate-based model interphases[J]. Journal of Power Sources, 2019, 418: 138-146. |
6 | XU C, SUN B, GUSTAFSSON T, et al. Interface layer formation in solid polymer electrolyte lithium batteries: An XPS study[J]. Journal of Materials Chemistry A, 2014, 2(20): 7256-7264. |
7 | LIU B W, YU X Y, ZHU Z H, et al. In situ chemical probing of the electrode-electrolyte interface by ToF-SIMS[J]. Lab on a Chip, 2014, 14(5): 855-859. |
8 | YAN C, CHENG X B, TIAN Y, et al. Lithium metal anodes: Dual-layered film protected lithium metal anode to enable dendrite-free lithium deposition[J]. Advanced Materials, 2018, 30(25): doi:10.1002/adma.201707629. |
9 | NIE M Y, CHALASANI D, ABRAHAM D P, et al. Lithium ion battery graphite solid electrolyte interphase revealed by microscopy and spectroscopy[J]. The Journal of Physical Chemistry C, 2013, 117(3): 1257-1267. |
10 | HABER S, LESKES M. What can we learn from solid state NMR on the electrode-electrolyte interface?[J]. Advanced Materials, 2018, 30(41): doi: 10.1002/adma.201706496. |
11 | DUPRE N, CUISINIER M, GUYOMARD D. Electrode/electrolyte interface studies in lithium batteries using NMR[J]. Interface Magazine, 2011, 20(3): 61-67. |
12 | DUER M J. Solid state NMR spectroscopy: principles and applications[M]. John Wiley & Sons, 2008. |
13 | O'DELL L A. The WURST kind of pulses in solid-state NMR[J]. Solid State Nuclear Magnetic Resonance, 2013, 55(56): 28-41. |
14 | AURBACH D, GAMOLSKY K, MARKOVSKY B, et al. On the use of vinylene carbonate (VC) as an additive to electrolyte solutions for Li-ion batteries[J]. Electrochimica Acta, 2002, 47(9): 1423-1439. |
15 | ZHANG X E, WANG S, XUE C J, et al. Self-suppression of lithium dendrite in all-solid-state lithium metal batteries with poly (vinylidene difluoride)-based solid electrolytes[J]. Advanced Materials, 2019, 31(11): doi: 10.1002/adma.1806082. |
16 | ZHANG Z Y, SMITH K, JERVIS R, et al. Operando electrochemical atomic force microscopy of solid-electrolyte interphase formation on graphite anodes: The evolution of SEI morphology and mechanical properties[J]. ACS Applied Materials & Interfaces, 2020, 12(31): 35132-35141. |
17 | LI Y Z, LI Y B, PEI A, et al. Atomic structure of sensitive battery materials and interfaces revealed by cryo-electron microscopy[J]. Science, 2017, 358(6362): 506-510. |
18 | LI Q, LIU X S, HAN X A, et al. Identification of the solid electrolyte interface on the Si/C composite anode with FEC as the additive[J]. ACS Applied Materials & Interfaces, 2019, 11(15): 14066-14075. |
19 | HU Y Y, LIU Z G, NAM K W, et al. Origin of additional capacities in metal oxide lithium-ion battery electrodes[J]. Nature Materials, 2013, 12(12): 1130-1136. |
20 | WAN C A, XU S C, HU M Y, et al. Multinuclear NMR study of the solid electrolyte interface formed in lithium metal batteries[J]. ACS Applied Materials & Interfaces, 2017, 9(17): 14741-14748. |
21 | MICHAN A L, LESKES M, GREY C P. Voltage dependent solid electrolyte interphase formation in silicon electrodes: Monitoring the formation of organic decomposition products[J]. Chemistry of Materials, 2016, 28(1): 385-398. |
22 | XIANG Y X, ZHENG G R, LIANG Z T, et al. Visualizing the growth process of sodium microstructures in sodium batteries by in situ 23Na MRI and NMR spectroscopy[J]. Nature Nanotechnology, 2020, 15(10): 883-890. |
23 | MAY R, FRITZSCHING K J, LIVITZ D, et al. Rapid interfacial exchange of Li ions dictates high coulombic efficiency in Li metal anodes[J]. ACS Energy Letters, 2021: 1162-1169. |
24 | MEYER B M, LEIFER N, SAKAMOTO S, et al. High field multinuclear NMR investigation of the SEI layer in lithium rechargeable batteries[J]. Electrochemical and Solid-State Letters, 2005, 8(3): A145. |
25 | REEVE Z E M, FRANKO C J, HARRIS K J, et al. Detection of electrochemical reaction products from the sodium-oxygen cell with solid-state 23Na NMR spectroscopy[J]. Journal of the American Chemical Society, 2017, 139(2): 595-598. |
26 | GAO L N, CHEN J E, CHEN Q L, et al. The chemical evolution of solid electrolyte interface in sodium metal batteries[J]. Science Advances, 2022, 8(6): eabm4606. |
27 | ZHENG G R, XIANG Y X, CHEN S J, et al. Additives synergy for stable interface formation on rechargeable lithium metal anodes[J]. Energy Storage Materials, 2020, 29: 377-385. |
28 | HABER S, LESKES M. Dynamic Nuclear Polarization in battery materials[J]. Solid State Nuclear Magnetic Resonance, 2022, 117: 101763. |
29 | LESKES M, KIM G, LIU T, et al. Surface-sensitive NMR detection of the solid electrolyte interphase layer on reduced graphene oxide[J]. The Journal of Physical Chemistry Letters, 2017, 8(5): 1078-1085. |
30 | JIN Y T, KNEUSELS N J H, MAGUSIN P C M M, et al. Identifying the structural basis for the increased stability of the solid electrolyte interphase formed on silicon with the additive fluoroethylene carbonate[J]. Journal of the American Chemical Society, 2017, 139(42): 14992-15004. |
31 | JIN Y T, KNEUSELS N J H, MARBELLA L E, et al. Understanding fluoroethylene carbonate and vinylene carbonate based electrolytes for Si anodes in lithium ion batteries with NMR spectroscopy[J]. Journal of the American Chemical Society, 2018, 140(31): 9854-9867. |
32 | HOPE M A, RINKEL B L D, GUNNARSDÓTTIR A B, et al. Selective NMR observation of the SEI-metal interface by dynamic nuclear polarisation from lithium metal[J]. Nature Communications, 2020, 11: 2224. |
33 | HUNG I, ZHOU L N, POURPOINT F, et al. Isotropic high field NMR spectra of Li-ion battery materials with anisotropy >1 MHz[J]. Journal of the American Chemical Society, 2012, 134(4): 1898-1901. |
34 | COLUMBUS D, ARUNACHALAM V, GLANG F, et al. Direct detection of lithium exchange across the solid electrolyte interphase by 7Li chemical exchange saturation transfer[J]. Journal of the American Chemical Society, 2022, 144(22): 9836-9844. |
35 | LIU M, ZHANG S N, VAN ECK E R H, et al. Improving Li-ion interfacial transport in hybrid solid electrolytes[J]. Nature Nanotechnology, 2022, 17(9): 959-967. |
36 | 陈骋, 凌仕刚, 郭向欣, 等. 固态锂二次电池关键材料中的空间电荷层效应: 原理和展望[J]. 储能科学与技术, 2016, 5(5): 668-677. |
CHEN C, LING S G, GUO X X, et al. Space charge layer effect in rechargeable solid state lithium batteries: Principle and perspective[J]. Energy Storage Science and Technology, 2016, 5(5): 668-677. | |
37 | CHENG Z, LIU M, GANAPATHY S, et al. Revealing the impact of space-charge layers on the Li-ion transport in all-solid-state batteries[J]. Joule, 2020, 4(6): 1311-1323. |
38 | YANG K, CHEN L K, MA J B, et al. Stable interface chemistry and multiple ion transport of composite electrolyte contribute to ultra-long cycling solid-state LiNi0.8Co0.1Mn0.1O2/lithium metal batteries[J]. Angewandte Chemie International Edition, 2021, 60(46): 24668-24675. |
39 | ZHENG J, TANG M X, HU Y Y. Lithium ion pathway within Li7La3Zr2O12-polyethylene oxide composite electrolytes[J]. Angewandte Chemie International Edition, 2016, 55(40): 12538-12542. |
40 | PELED E, MENKIN S. Review—SEI: Past, present and future[J]. Journal of the Electrochemical Society, 2017, 164(7): A1703-A1719. |
41 | GRIFFIN J M, FORSE A C, WANG H, et al. Ion counting in supercapacitor electrodes using NMR spectroscopy[J]. Faraday Discussions, 2014, 176(0): 49-68. |
42 | LEVI M D, SALITRA G, LEVY N, et al. Application of a quartz-crystal microbalance to measure ionic fluxes in microporous carbons for energy storage[J]. Nature Materials, 2009, 8(11): 872-875. |
43 | BOUKHALFA S, HE L, MELNICHENKO Y B, et al. Small-angle neutron scattering for in situ probing of ion adsorption inside micropores[J]. Angewandte Chemie International Edition, 2013, 52(17): 4618-4622. |
44 | SHARMA K, BILHEUX H Z, WALKER L M H, et al. Neutron imaging of ion transport in mesoporous carbon materials[J]. Physical Chemistry Chemical Physics, 2013, 15(28): 11740-11747. |
45 | LAZZERETTI P. Ring Currents[J]. Progress in Nuclear Magnetic Resonance Spectroscopy, 2000, 36(1): 1-88. |
46 | YANG Y, FU R, HUO H. NMR and MRI of electrochemical energy storage materials and devices[M]. Royal Society of Chemistry, 2021. |
47 | WANG H, KÖSTER T K J, TREASE N M, et al. Real-time NMR studies of electrochemical double-layer capacitors[J]. Journal of the American Chemical Society, 2011, 133(48): 19270-19273. |
48 | WANG H, FORSE A C, GRIFFIN J M, et al. In situ NMR spectroscopy of supercapacitors: Insight into the charge storage mechanism[J]. Journal of the American Chemical Society, 2013, 135(50): 18968-18980. |
49 | GRIFFIN J M, FORSE A C, TSAI W Y, et al. In situ NMR and electrochemical quartz crystal microbalance techniques reveal the structure of the electrical double layer in supercapacitors[J]. Nature Materials, 2015, 14(8): 812-819. |
50 | FORSE A C, GRIFFIN J M, GREY C P. Selective observation of charge storing ions in supercapacitor electrode materials[J]. Solid State Nuclear Magnetic Resonance, 2018, 89: 45-49. |
51 | SU X L, YE J L, ZHU Y W. Advances in in-situ characterizations of electrode materials for better supercapacitors[J]. Journal of Energy Chemistry, 2021, 54: 242-253. |
[1] | 张楚, 陈栋才, 陈湘萍, 蔡永翔. 多应用场景下储能最优配置经济性效益分析[J]. 储能科学与技术, 2024, 13(6): 2078-2088. |
[2] | 刘青宜. 钠离子电池的储能机制与性能提升策略[J]. 储能科学与技术, 2024, 13(6): 1871-1873. |
[3] | 曾坤, 郑晓妍, 龚慧玲, 邹博, 陈凯, 晏忠钠. 基于锂负极的液态金属电池研究进展[J]. 储能科学与技术, 2024, 13(1): 299-310. |
[4] | 闫苏, 钟芳芳, 刘俊伟, 丁美, 贾传坤. 高能量密度液流电池关键材料与先进表征[J]. 储能科学与技术, 2024, 13(1): 143-156. |
[5] | 张力菠, 王格格. 电化学储能电池技术主题识别、演化及风险分析[J]. 储能科学与技术, 2023, 12(8): 2680-2692. |
[6] | 赵光金, 李博文, 胡玉霞, 董锐锋, 王放放. 退役动力电池梯次利用技术及工程应用概述[J]. 储能科学与技术, 2023, 12(7): 2319-2332. |
[7] | 黄渭彬, 张彪, 范金成, 杨伟, 邹汉波, 陈胜洲. ZIF-8复合PEO基固态电解质的制备与改性研究[J]. 储能科学与技术, 2023, 12(4): 1083-1092. |
[8] | 程志翔, 曹伟, 户波, 程云芳, 李鑫, 姜丽华, 金凯强, 王青松. 储能用大容量磷酸铁锂电池热失控行为及燃爆传播特性[J]. 储能科学与技术, 2023, 12(3): 923-933. |
[9] | 张宣梁, 何霆, 朱文龙, 王屾, 曾建华, 徐泉, 牛迎春. 基于多循环特征的储能电池SOH估计模型[J]. 储能科学与技术, 2023, 12(11): 3488-3498. |
[10] | 刘阳, 滕卫军, 谷青发, 孙鑫, 谭宇良, 方知进, 李建林. 规模化多元电化学储能度电成本及其经济性分析[J]. 储能科学与技术, 2023, 12(1): 312-318. |
[11] | 李泓, 张强. 蓄势赋能谋发展,勇毅笃行谱新篇[J]. 储能科学与技术, 2022, 11(9): 2691-2701. |
[12] | 曹志成, 周开运, 朱家立, 刘高明, 严慜, 汤舜, 曹元成, 程时杰, 张炜鑫. 锂离子电池储能系统消防技术的中国专利分析[J]. 储能科学与技术, 2022, 11(8): 2664-2670. |
[13] | 林楠, KREWER Ulrike, ZAUSCH Jochen, STEINER Konrad, 林海波, 冯守华. 电化学能量储存和转换体系多物理场模型的建立及其应用[J]. 储能科学与技术, 2022, 11(4): 1149-1164. |
[14] | 赵志伟, 杨智, 彭章泉. 飞行时间二次离子质谱在锂基二次电池中的应用[J]. 储能科学与技术, 2022, 11(3): 781-794. |
[15] | 施思齐, 涂章伟, 邹欣欣, 孙拾雨, 杨正伟, 刘悦. 数据驱动的机器学习在电化学储能材料研究中的应用[J]. 储能科学与技术, 2022, 11(3): 739-759. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||