储能科学与技术 ›› 2024, Vol. 13 ›› Issue (10): 3388-3399.doi: 10.19799/j.cnki.2095-4239.2024.0669
董先锋1(), 张稚国1(), 李华清2, 王莉1, 何向明1
收稿日期:
2024-07-18
出版日期:
2024-10-28
发布日期:
2024-10-30
通讯作者:
张稚国
E-mail:dxf24@mails.tsinghua.edu.cn;zhangzhiguohit@gmail.com
作者简介:
董先锋(2002—),男,硕士研究生,主要研究方向为化学工程与技术,E-mail:dxf24@mails.tsinghua.edu.cn;
基金资助:
Xianfeng DONG1(), Zhiguo ZHANG1(), Huaqing LI2, Li WANG1, Xiangming HE1
Received:
2024-07-18
Online:
2024-10-28
Published:
2024-10-30
Contact:
Zhiguo ZHANG
E-mail:dxf24@mails.tsinghua.edu.cn;zhangzhiguohit@gmail.com
摘要:
塑料膜复合集流体(PFCC)是一种具有金属层+塑料聚合物+金属层的类三明治结构的新型电池集流体,可以提高锂离子电池的能量密度和安全性,因此受到了电池相关研究者的广泛关注。但PFCC也为锂离子电池的应用带来很多挑战,使其产业化进程缓慢。本文总结了其带来的诸多挑战,例如,聚合物-金属间结合力弱导致在聚合物层电解液浸泡时易脱层、导电性差使其过流能力下降、聚合物层易被腐蚀等,同时对其相关机理展开了详细的阐述:部分聚合物为非极性分子,与金属层间作用力弱;聚合物自身绝缘;PET易被催化解聚及热稳定性差等缺点。针对以上不足,本文系统地归纳了PFCC在锂离子电池应用技术中的发展历程,同时明确了可以通过界面工程、材料调控、加工技术和设备优化等方法、措施对其进行改进,例如:设置焊接质量的实时监控系统,建立多功能界面强化层,设计集流体内外功能性结构等,以期为PFCC的发展奠定理论基础,并推动PFCC在锂离子电池中的应用。
中图分类号:
董先锋, 张稚国, 李华清, 王莉, 何向明. 塑料膜复合集流体在锂离子电池应用中的挑战与改进措施[J]. 储能科学与技术, 2024, 13(10): 3388-3399.
Xianfeng DONG, Zhiguo ZHANG, Huaqing LI, Li WANG, Xiangming HE. Challenges and improvement measures of plastic film composite current collectors for lithium-ion batteries[J]. Energy Storage Science and Technology, 2024, 13(10): 3388-3399.
1 | WANG Q Y, ZHU M, CHEN G R, et al. High-performance microsized Si anodes for lithium-ion batteries: Insights into the polymer configuration conversion mechanism[J]. Advanced Materials, 2022, 34(16): e2109658. DOI: 10.1002/adma.202109658. |
2 | HAN B, XU D W, CHI S S, et al. 500 wh/kg class Li metal battery enabled by a self-organized core-shell composite anode[J]. Advanced Materials, 2020, 32(42): 2004793. DOI: 10.1002/adma.202004793. |
3 | 高鹏飞, 杨军. 锂离子电池硅复合负极材料研究进展[J]. 化学进展, 2011, 23(S1): 264-274. |
GAO P F, YANG J. Si-based composite anode materials for Li-ion batteries[J]. Progress in Chemistry, 2011, 23(S1): 264-274. | |
4 | 张玉坤, 邹朝辉, 张云霞. 锂离子电池用先进集流体的应用研究[J]. 有色金属加工, 2023, 52(4): 1-5. DOI: 10.3969/j.issn.1671-6795.2023.04.001. |
ZHANG Y K, ZOU C H, ZHANG Y X. Application research of advanced fluid collector for lithium ion battery[J]. Nonferrous Metals Processing, 2023, 52(4): 1-5. DOI: 10.3969/j.issn.1671-6795.2023.04.001. | |
5 | ZHU P C, GASTOL D, MARSHALL J, et al. A review of current collectors for lithium-ion batteries[J]. Journal of Power Sources, 2021, 485: 229321. DOI: 10.1016/j.jpowsour.2020.229321. |
6 | 熊明华, 冯连朋, 李华清. 电池集流体材料的研发与应用[J]. 化工新型材料, 2023, 51(S1): 241-247. DOI: 10.19817/j.cnki.issn1006-3536.2023.S1.043. |
XIONG M H, FENG L P, LI H Q. Development and application of battery current collector materials[J]. New Chemical Materials, 2023, 51(S1): 241-247. DOI: 10.19817/j.cnki.issn1006-3536.2023.S1.043. | |
7 | 齐大志, 程滋平, 刘慧芳, 等. 一种复合集流体极耳连接结构: CN219779156U[P]. 2023-09-29. |
8 | 李凯, 李昭, 张辉, 等. 复合集流体基膜、复合集流体以及电芯: CN116706087A[P]. 2023-09-05. |
9 | 张稚国, 李华清, 王莉, 等. 锂离子电池塑料-金属复合集流体的特性及制备研究进展[J]. 储能科学与技术, 2024, 13(3): 749-758. |
ZHANG Z G, LI H Q, WANG L, et al. Characteristics and preparation of metallized plastic current collectors for lithium-ion batteries[J]. Energy Storage Science and Technology, 2024, 13(3): 749-758. | |
10 | 田海玉. 一种复合箔极片集流体及其制备方法: CN116581300A[P]. 2023-08-11. |
11 | 刘畅, 周海平, 吴孟强, 等. 一种复合集流体的制备方法: CN116676556A[P]. 2023-09-01. |
12 | 王成豪, 李学法, 张国平. 低溶胀的复合集流体及其制备方法: CN114864953A[P]. 2022-08-05. |
13 | CHEN J Y, LI S J, QIAO X, et al. Integrated porous Cu host induced high-stable bidirectional Li plating/stripping behavior for practical Li metal batteries[J]. Small, 2022, 18(6): e2105999. DOI: 10.1002/smll.202105999. |
14 | 程杰, 孙世强, 曹高萍, 等. 一种耐腐蚀复合集流体及其制作方法: CN101192669A[P]. 2008-06-04. |
15 | HO P S. Chemistry and adhesion of metal-polymer interfaces[J]. Applied Surface Science, 1990, 41: 559-566. DOI: 10.1016/0169-4332(89)90122-0. |
16 | PAIK K W, RUOFF A L. Adhesion enhancement of thin copper film on polyimide modified by oxygen reactive ion beam etching[J]. Journal of Adhesion Science and Technology, 1990, 4(1): 465-474. DOI: 10.1163/156856190x00432. |
17 | STRULLER C F, KELLY P J, COPELAND N J. Aluminum oxide barrier coatings on polymer films for food packaging applications[J]. Surface and Coatings Technology, 2014, 241: 130-137. DOI: 10.1016/j.surfcoat.2013.08.011. |
18 | KOUICEM M M, TOMASELLA E, BOUSQUET A, et al. An investigation of adhesion mechanisms between plasma-treated PMMA support and aluminum thin films deposited by PVD[J]. Applied Surface Science, 2021, 564: 150322. DOI: 10.1016/j.apsusc.2021.150322. |
19 | MWEMA F M, OLADIJO O P, AKINLABI S A, et al. Properties of physically deposited thin aluminium film coatings: A review[J]. Journal of Alloys and Compounds, 2018, 747: 306-323. DOI: 10.1016/j.jallcom.2018.03.006. |
20 | ZHANG Z G, SONG Y Z, ZHANG B, et al. Metallized plastic foils: A promising solution for high-energy lithium-ion battery current collectors[J]. Advanced Energy Materials, 2023, 13(36): 2302134. DOI: 10.1002/aenm.202302134. |
21 | 范琼. 一种新型复合集电体及其制备方法: CN115498193A[P]. 2022-12-20. |
22 | 胡华胜, 朱行威, 胡耀强. 一种复合结构柔性集流体及其制备方法: CN114784291A[P]. 2022-07-22. |
23 | 崔言明, 许晓雄, 丁少, 等. 一种复合集流体的焊接结构: CN217983404U[P]. 2022-12-06. |
24 | ZAMESHIN A, POPOV M, MEDVEDEV V, et al. Electrical conductivity of nanostructured and C60-modified aluminum[J]. Applied Physics A, 2012, 107(4): 863-869. DOI: 10.1007/s00339-012-6805-x. |
25 | YOON E, LEE J, BYUN S, et al. Passivation failure of Al current collector in LiPF6-based electrolytes for lithium-ion batteries[J]. Advanced Functional Materials, 2022, 32(22): 2200026. DOI: 10.1002/adfm.202200026. |
26 | LOGAN E R, HEBECKER H, ELDESOKY A, et al. Performance and degradation of LiFePO4/graphite cells: The impact of water contamination and an evaluation of common electrolyte additives[J]. Journal of the Electrochemical Society, 2020, 167(13): 130543. DOI: 10.1149/1945-7111/abbbbe. |
27 | BUECHELE S, LOGAN E, BOULANGER T, et al. Reversible self-discharge of LFP/graphite and NMC811/graphite cells originating from redox shuttle generation[J]. Journal of the Electrochemical Society, 2023, 170(1): 010518. DOI: 10.1149/1945-7111/acb10c. |
28 | BUECHELE S, ADAMSON A, ELDESOKY A, et al. Identification of redox shuttle generated in LFP/graphite and NMC811/graphite cells[J]. Journal of the Electrochemical Society, 2023, 170(1): 010511. DOI: 10.1149/1945-7111/acaf44. |
29 | ADAMSON A, TUUL K, BÖTTICHER T, et al. Improving lithium-ion cells by replacing polyethylene terephthalate jellyroll tape[J]. Nature Materials, 2023, 22(11): 1380-1386. DOI: 10.1038/s41563-023-01673-3. |
30 | 陈海. 锂离子电池正极铝集流体耐蚀性能研究[D]. 哈尔滨: 哈尔滨工业大学, 2009.CHEN H. Study on the anti-corrosion of alumium current collector for lithium-ion battery[D]. Harbin: Harbin Institute of Technology, 2009. |
31 | 吕东生, 李伟善, 周震涛. 锂离子蓄电池铝集流体腐蚀的研究进展[J]. 电源技术, 2007, 31(10): 830-832. DOI: 10.3969/j.issn.1002-087X.2007.10.020. |
LV D S, LI W S, ZHOU Z T. Development progress of corrosion of aluminum used as current collector for Li-ion battery[J]. Chinese Journal of Power Sources, 2007, 31(10): 830-832. DOI: 10.3969/j.issn.1002-087X.2007.10.020. | |
32 | YOON T, SOON J, LEE T J, et al. Dissolution of cathode–electrolyte interphase deposited on LiNi0.5Mn1.5O4 for lithium-ion batteries[J]. Journal of Power Sources, 2021, 503: 230051. DOI: 10.1016/j.jpowsour.2021.230051. |
33 | 翟兰兰, 凌国平, 郦剑. 金属/高分子涂层附着机理的研究方法[J]. 材料导报, 2006, 20(S2): 274-277. DOI: 10.3321/j.issn: 1005-023X.2006.z2.080. |
ZHAI L L, LING G P, LI J. Review on the research techniques about the adhesion mechanisms of metals/polymer coatings[J]. Materials Reports, 2006, 20(S2): 274-277. DOI: 10.3321/j.issn: 1005-023X.2006.z2.080. | |
34 | LEE H Y, QU J M. Microstructure, adhesion strength and failure path at a polymer/roughened metal interface[J]. Journal of Adhesion Science and Technology, 2003, 17(2): 195-215. DOI: 10.1163/156856103762302005. |
35 | LEE H Y, KIM Y H, CHANG Y K. Fracture behaviors of nanowire-coated metal/polymer systems under mode-I loading condition[J]. Acta Materialia, 2004, 52(20): 5815-5828. DOI: 10.1016/j.actamat.2004.08.040. |
36 | SUN C, ZHANG D, WADSWORTH L C. Corona treatment of polyolefin films—A review[J]. Advances in Polymer Technology, 1999, 18(2): 171-180. |
37 | NEMANI S K, ANNAVARAPU R K, MOHAMMADIAN B, et al. Surface modification of polymers: Methods and applications[J]. Advanced Materials Interfaces, 2018, 5(24): 1801247. DOI: 10.1002/admi.201801247. |
38 | CHOI J Y, LEE D J, LEE Y M, et al. Silicon nanofibrils on a flexible current collector for bendable lithium-ion battery anodes[J]. Advanced Functional Materials, 2013, 23(17): 2108-2114. DOI: 10.1002/adfm.201202458. |
39 | PARK S J, KO T J, YOON J, et al. Highly adhesive and high fatigue-resistant copper/PET flexible electronic substrates[J]. Applied Surface Science, 2018, 427: 1-9. DOI: 10.1016/j.apsusc.2017.08.195. |
40 | 庄志, 王纯, 郭桂略, 等. 一种带有U型焊接区的复合集流体的制备方法: CN116072882A[P]. 2023-05-05. |
41 | WANG Z L, FURUYA A, YASUDA K, et al. Adhesion improvement of electroless copper to a polyimide film substrate by combining surface microroughening and imide ring cleavage[J]. Journal of Adhesion Science and Technology, 2002, 16(8): 1027-1040. DOI: 10.1163/156856102760146147. |
42 | WANG Y, NI L J, YANG F, et al. Facile preparation of a high-quality copper layer on epoxy resin via electroless plating for applications in electromagnetic interference shielding[J]. Journal of Materials Chemistry C, 2017, 5(48): 12769-12776. DOI: 10.1039/C7TC03823B. |
43 | CHEN X C, YOU B, ZHOU S X, et al. Surface and interface characterization of polyester-based polyurethane/nano-silica composites[J]. Surface and Interface Analysis, 2003, 35(4): 369-374. DOI: 10.1002/sia.1544. |
44 | 武佳, 冯庆, 贾波, 等. 一种PET铜箔、化学镀制备方法及其应用: CN116607134A[P]. 2023-08-18. |
45 | 陈兆平, 李凯, 张辉, 等. 纳米金属涂层及应用、复合集流体基膜和复合集流体: CN116487601A[P]. 2023-07-25. |
46 | 杨晓兵. 复合集流体、应用所述复合集流体的电池和电子装置: CN113795954B[P]. 2022-08-26. |
47 | 陈启武, 许涛, 王磊, 等. 一种超薄复合集流体的制备方法: CN114015994A[P]. 2022-02-08. |
48 | YAN L B, CHOUW N, JAYARAMAN K. Lateral crushing of empty and polyurethane-foam filled natural flax fabric reinforced epoxy composite tubes[J]. Composites Part B: Engineering, 2014, 63: 15-26. DOI: 10.1016/j.compositesb.2014.03.013. |
49 | LEPAGE D, SAVIGNAC L, SAULNIER M, et al. Modification of aluminum current collectors with a conductive polymer for application in lithium batteries[J]. Electrochemistry Communications, 2019, 102: 1-4. DOI: 10.1016/j.elecom.2019.03.009. |
50 | TRINH N D, SAULNIER M, LEPAGE D, et al. Conductive polymer film supporting LiFePO4 as composite cathode for lithium ion batteries[J]. Journal of Power Sources, 2013, 221: 284-289. DOI: 10.1016/j.jpowsour.2012.08.006. |
51 | SHENG L, ZHU D, YANG K, et al. Unraveling the hydrolysis mechanism of LiPF6 in electrolyte of lithium ion batteries[J]. Nano Letters, 2024, 24(2): 533-540. DOI: 10.1021/acs.nanolett.3c01682. |
52 | DI CENSO D, EXNAR I, GRAETZEL M. Non-corrosive electrolyte compositions containing perfluoroalkylsulfonyl imides for high power Li-ion batteries[J]. Electrochemistry Communications, 2005, 7(10): 1000-1006. DOI: 10.1016/j.elecom.2005.07.005. |
53 | 文越华, 任子涵, 邵玲, 等. 一种金属/碳复合集流体材料及其制备方法: CN106876716A[P]. 2017-06-20. |
54 | 陈鹏, 任宁, 姬学敏, 等. 涂炭铝箔在石墨/磷酸铁锂电池中的应用研究[J]. 新能源进展, 2017, 5(2): 157-162. DOI: 10.3969/j.issn.2095-560X.2017.02.013. |
CHEN P, REN N, JI X M, et al. Investigation on graphite/LiFePO4 batteries fabircated by carbon-coated aluminum foil current collector[J]. Advances in New and Renewable Energy, 2017, 5(2): 157-162. DOI: 10.3969/j.issn.2095-560X.2017.02.013. | |
55 | CAO L J, LI L L, XUE Z, et al. The aluminum current collector with honeycomb-like surface and thick Al2O3 film increased durability and enhanced safety for lithium-ion batteries[J]. Journal of Porous Materials, 2020, 27(6): 1677-1683. DOI: 10.1007/s10934-020-00942-9. |
56 | 王帅, 朱中亚, 夏建中, 等. 复合集流体: CN218498103U[P]. 2023-02-17. |
57 | 周婷, 晁承鹏. 一种耐电解液的复合集流体: CN219163433U[P]. 2023-06-09. |
58 | 朱中亚, 王帅, 夏建中, 等. 耐溶胀型聚酯复合膜及其制备方法和应用: CN115447246A[P]. 2022-12-09. |
[1] | 孙中麟, 李嘉波, 田迪, 王志璇, 邢晓静. 基于COA-LSTM和VMD的锂离子电池剩余寿命预测[J]. 储能科学与技术, 2024, 13(9): 3254-3265. |
[2] | 陆继忠, 彭思敏, 李晓宇. 基于多特征量分析和LSTM-XGBoost模型的锂离子电池SOH估计方法[J]. 储能科学与技术, 2024, 13(9): 2972-2982. |
[3] | 胡雪峰, 常先雷, 刘肖肖, 徐威, 张文彬. 适用于宽温度范围的锂离子电池SOC估计方法[J]. 储能科学与技术, 2024, 13(9): 2983-2994. |
[4] | 沈思远, 刘亚坤, 罗栋煌, 李雨珺, 郝伟. 储能锂离子电池模组暂态过电压防护设计与电路研发[J]. 储能科学与技术, 2024, 13(9): 3277-3286. |
[5] | 陈媛, 章思源, 蔡宇晶, 黄小贺, 刘炎忠. 融合多项式特征扩展与CNN-Transformer模型的锂电池SOH估计[J]. 储能科学与技术, 2024, 13(9): 2995-3005. |
[6] | 邢瑞鹤, 翁素婷, 李叶晶, 张佳怡, 张浩, 王雪锋. AI辅助电池材料表征与数据分析[J]. 储能科学与技术, 2024, 13(9): 2839-2863. |
[7] | 何宁, 杨芳芳. 考虑能量和温度特征的锂离子电池早期寿命预测[J]. 储能科学与技术, 2024, 13(9): 3016-3029. |
[8] | 管鸿盛, 钱诚, 孙博, 任羿. 贫数据条件下锂离子电池容量退化轨迹预测方法[J]. 储能科学与技术, 2024, 13(9): 3084-3093. |
[9] | 柯学, 洪华伟, 郑鹏, 李智诚, 范培潇, 杨军, 郭宇铮, 蒯春光. 基于多时间尺度建模自动特征提取和通道注意力机制的锂离子电池健康状态估计[J]. 储能科学与技术, 2024, 13(9): 3059-3071. |
[10] | 田成文, 孙丙香, 赵鑫泽, 付智城, 马仕昌, 赵博, 张旭博. 基于数据驱动的锂离子电池快速寿命预测[J]. 储能科学与技术, 2024, 13(9): 3103-3111. |
[11] | 李清波, 张懋慧, 罗英, 吕桃林, 解晶莹. 基于等效电路模型融合电化学原理的锂离子电池荷电状态估计[J]. 储能科学与技术, 2024, 13(9): 3072-3083. |
[12] | 何智峰, 陶远哲, 胡泳钢, 王其聪, 杨勇. 机器学习强化的电化学阻抗谱技术及其在锂离子电池研究中的应用[J]. 储能科学与技术, 2024, 13(9): 2933-2951. |
[13] | 孙丙香, 杨鑫, 周兴振, 马仕昌, 王志豪, 张维戈. 基于简化阻抗模型和比较元启发式算法的锂离子电池参数辨识方法[J]. 储能科学与技术, 2024, 13(9): 2952-2962. |
[14] | 黄煜峰, 梁焕超, 许磊. 基于卡尔曼滤波算法优化Transformer模型的锂离子电池健康状态预测方法[J]. 储能科学与技术, 2024, 13(8): 2791-2802. |
[15] | 王志勇, 蔡君瑶, 佘英奇, 钟树林, 潘康华. 氮杂环导电高分子改性锂离子电池石墨负极材料[J]. 储能科学与技术, 2024, 13(8): 2511-2518. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||