储能科学与技术 ›› 2024, Vol. 13 ›› Issue (11): 3784-3795.doi: 10.19799/j.cnki.2095-4239.2024.0432
收稿日期:
2024-05-15
修回日期:
2024-06-03
出版日期:
2024-11-28
发布日期:
2024-11-27
通讯作者:
望红玉
E-mail:lby1755825225@163.com;HYuWang26@163.com
作者简介:
刘博宇(2001—),男,硕士研究生,主要从事锂离子电池正极材料的研究工作,E-mail:lby1755825225@163.com;
基金资助:
Boyu LIU(), Qing PANG, Tengfei WANG, Hongyu WANG()
Received:
2024-05-15
Revised:
2024-06-03
Online:
2024-11-28
Published:
2024-11-27
Contact:
Hongyu WANG
E-mail:lby1755825225@163.com;HYuWang26@163.com
摘要:
随着科技的发展和时代进步,能源消耗日益增大,新能源的开发利用已成为迫在眉睫的问题。锂离子电池因具有高的能量密度、长的循环寿命和宽的工作温度范围等优点,在过去的几十年里,得到了快速发展。高镍三元正极材料LiNi0.8Co0.1Mn0.1O2(NCM811)因具有高能量密度和低成本的优点,被认为是下一代锂离子电池中最具发展潜力的正极材料之一。目前NCM811的充电截止电压限制在4.3 V,进一步提升充电截止电压可以提高电极材料的能量密度,然而在高充电截止电压情况下,由于NCM811存在阳离子混排、裂纹的产生和扩展、晶格氧的析出、与电解液接触而产生副反应和晶格畸变等因素使得材料的结构稳定性下降和不可逆相变的产生,导致其严重的容量衰减和循环性能的急剧下降,阻碍了NCM811在高压条件下的大规模应用。本文综述了高压下NCM811改性策略的最新研究进展,首先阐述了高压条件下NCM811的失效机理,然后介绍了元素掺杂、表面包覆、复合改性策略对其电化学性能的影响规律及其改善机理。最后展望了NCM811改善策略的发展方向,并针对不同改性策略提出了面向实际应用的可行性方案。
中图分类号:
刘博宇, 庞青, 王腾飞, 望红玉. 高镍三元正极材料LiNi0.8Co0.1Mn0.1O2 在高压下的研究进展[J]. 储能科学与技术, 2024, 13(11): 3784-3795.
Boyu LIU, Qing PANG, Tengfei WANG, Hongyu WANG. Advancements in the modification of high-voltage Ni-rich ternary cathode material LiNi0.8Co0.1Mn0.1O2 for lithium-ion batteries[J]. Energy Storage Science and Technology, 2024, 13(11): 3784-3795.
表1
高压NCM811的掺杂改性策略总结"
掺杂元素 | 主要作用 | 放电比容量/(mAh/g) | 循环次数 | 容量保持率 | 电压范围(vs. Li/Li+)/V | 参考文献 |
---|---|---|---|---|---|---|
Mg | 增加锂离子扩散通道 | 226.1 | 350 | 81% | 3.0~4.5 | [ |
Ti | 增大晶格常数 | 196(0.5 C) | 100 | 84% | 2.8~4.6 | [ |
Nb | 抑制阳离子混排 | 222.3 | 100 | 92.3% | 2.8~4.6 | [ |
Al | 抑制阳离子混排 | 174 | 100 | 86.6% | 3.0~4.3 | [ |
Mo | 抑制阳离子混排 | 202.4(0.2 C) | 200 | 94.4% | 2.7~4.3 | [ |
Fe | 抑制阳离子混排 | 211.4 | 500 | 77.5% | 2.7-4.5 | [ |
La&Al | 强化体相结构 | 192.7 | 100 | 97.2% | 3.0~4.4 | [ |
In&Sn | 抑制阳离子混排 | 202 | 100 | 90% | 2.7~4.5 | [ |
表2
高压NCM811的包覆改性策略总结"
包覆层 | 主要作用 | 放电比容量/(mAh/g) | 循环次数 | 容量保持率 | 电压范围(vs. Li/Li+)/V | 参考文献 |
---|---|---|---|---|---|---|
FePO4 | 提高电导率 | 218.8 | 100 | 97% | 2.7~4.5 | [ |
LaFeO3 | 保护正极 | 215.4 | 80 | 64.6% | 3.0~4.5 | [ |
La x Ca1-x [TM]O3-x | 提高电导率 | 225 | 1000 | 88.3% | 2.7~4.5 | [ |
LBO | 提高离子导电率 | 207.8 | 100 | 82.1% | 2.7~4.5 | [ |
LMNCO | 提高离子电导率 | 230.8 | 500 | 83.4% | 2.7~4.6 | [ |
LiF | 抑制结构退化 | 223 | 100 | 85% | 3.0~4.6 | [ |
LiAlF 4 | 提高电导率 | 206 | 100 | 95.7% | 2.7~4.5 | [ |
表3
高压NCM811的复合改性策略总结"
复合方式 | 主要作用 | 放电比容量/(mAh/g) | 循环次数 | 容量保持率 | 电压范围(vs. Li/Li+)/V | 参考文献 |
---|---|---|---|---|---|---|
Co氧化物层和Ti掺杂 | 提高电导率 | 121(20 C) | 400 | 92% | 2.7~4.7 | [ |
Sr基涂层和体掺杂 | 抑制晶格氧缺失 | 295.4 | 100 | 82.3% | 2.7~4.5 | [ |
La2Ni0.5Li0.5O4涂层和La3+掺杂 | 抑制副反应 | 229(0.2 C) | 200 | 90.1% | 2.7~4.7 | [ |
Sb-Sb2O3 | 提高离子导电率 | 196 | 100 | 89.3% | 2.75~4.4 | [ |
梯度掺杂Nb,LiNbO3包覆 | 稳定晶体结构 | 214.8 | 300 | 85.1% | 3.0~4.4 | [ |
Li2SnO3包覆,Sn4+梯度掺杂 | 稳定结构 | 218.4 | 200 | 86.5% | 3.0~4.5 | [ |
1 | MAYER A. Fossil fuel dependence and energy insecurity[J]. Energy, Sustainability and Society, 2022, 12(1): 27. DOI: 10.1186/s13705-022-00353-5. |
2 | XIE J, LU Y C. A retrospective on lithium-ion batteries[J]. Nature Communications, 2020, 11(1): 2499. DOI: 10.1038/s41467-020-16259-9. |
3 | HARPER G, SOMMERVILLE R, KENDRICK E, et al. Recycling lithium-ion batteries from electric vehicles[J]. Nature, 2019, 575(7781): 75-86. DOI: 10.1038/s41586-019-1682-5. |
4 | CLARKE M, ALONSO J J. Lithium-ion battery modeling for aerospace applications[J]. Journal of Aircraft, 2021, 58(6): 1323-1335. DOI: 10.2514/1.c036209. |
5 | MANTHIRAM A. A reflection on lithium-ion battery cathode chemistry[J]. Nature Communications, 2020, 11: 1550. DOI: 10. 1038/s41467-020-15355-0. |
6 | 朱树豪, 姚锐, 肖承翔, 等. 锂/钠离子电池中铁基氟化物正极材料的研究进展[J]. 材料研究与应用, 2023, 17(5): 864-873. DOI: 10.20038/j.cnki.mra.2023.000507. |
ZHU S H, YAO R, XIAO C X, et al. Recent progress of iron-based fluoride cathodes in lithium/sodium ion batteries[J]. Materials Research and Application, 2023, 17(5): 864-873. DOI: 10.20038/j.cnki.mra.2023.000507. | |
7 | WEI H X, TANG L B, HUANG Y D, et al. Comprehensive understanding of Li/Ni intermixing in layered transition metal oxides[J]. Materials Today, 2021, 51: 365-392. DOI: 10.1016/j.mattod.2021.09.013. |
8 | ZHANG W J. Structure and performance of LiFePO4 cathode materials: A review[J]. Journal of Power Sources, 2011, 196(6): 2962-2970. DOI: 10.1016/j.jpowsour.2010.11.113. |
9 | JULIEN C M, MAUGER A. NCA, NCM811, and the route to Ni-richer lithium-ion batteries[J]. Energies, 2020, 13(23): 6363. DOI: 10.3390/en13236363. |
10 | WANG B, ZHANG F L, ZHOU X N, et al. Which of the nickel-rich NCM and NCA is structurally superior as a cathode material for lithium-ion batteries?[J]. Journal of Materials Chemistry A, 2021, 9(23): 13540-13551. DOI: 10.1039/D1TA01128F. |
11 | NOH H J, YOUN S, YOON C S, et al. Comparison of the structural and electrochemical properties of layered Li[NixCoyMnz]O2 (x = 1/3, 0.5, 0.6, 0.7, 0.8 and 0.85) cathode material for lithium-ion batteries[J]. Journal of Power Sources, 2013, 233: 121-130. DOI: 10.1016/j.jpowsour.2013.01.063. |
12 | LI G X, XU R Y, CHU B B, et al. Electrochemical oxygen evolution coupled structure and capacity decay of single-crystal LiNi0.6Co0.2Mn0.2O2 cathode materials[J]. Journal of Power Sources, 2024, 589: 233714. DOI: 10.1016/j.jpowsour. 2023.233714. |
13 | KIM J, LEE H, CHA H, et al. Prospect and reality of Ni-rich cathode for commercialization[J]. Advanced Energy Materials, 2018, 8(6): 1702028. DOI: 10.1002/aenm.201702028. |
14 | CHENG F Y, ZHANG X Y, WEI P, et al. Tailoring electrolyte enables high-voltage Ni-rich NCM cathode against aggressive cathode chemistries for Li-ion batteries[J]. Science Bulletin, 2022, 67(21): 2225-2234. DOI: 10.1016/j.scib.2022.10.007. |
15 | TAN X R, ZHANG M L, LI J, et al. Recent progress in coatings and methods of Ni-rich LiNi0.8Co0.1Mn0.1O2 cathode materials: A short review[J]. Ceramics International, 2020, 46(14): 21888-21901. DOI: 10.1016/j.ceramint.2020.06.091. |
16 | LI W D, LIU X M, XIE Q, et al. Long-term cyclability of NCM-811 at high voltages in lithium-ion batteries: An in-depth diagnostic study[J]. Chemistry of Materials, 2020, 32(18): 7796-7804. DOI: 10.1021/acs.chemmater.0c02398. |
17 | HAN D Y, WENG J Z, ZHANG X, et al. Review — Revealing the intercrystalline cracking mechanism of NCM and some regulating strategies[J]. Journal of the Electrochemical Society, 2022, 169(4): 040512. DOI: 10.1149/1945-7111/ac60ee. |
18 | WANG L M, SU Q M, HAN B, et al. Unraveling the degradation mechanism of LiNi0.8Co0.1Mn0.1O2 at the high cut-off voltage for lithium ion batteries[J]. Journal of Energy Chemistry, 2023, 77: 428-437. DOI: 10.1016/j.jechem. 2022. 11.016. |
19 | TAN X R, ZHANG M L, ZHANG D Y, et al. Inhibited intracrystalline cracks and enhanced electrochemical properties of NCM811 cathode materials coated by EPS[J]. Ceramics International, 2021, 47(23): 32710-32719. DOI: 10.1016/j.ceramint.2021.08.167. |
20 | XU C, REEVES P J, JACQUET Q, et al. Phase behavior during electrochemical cycling of Ni-rich cathode materials for Li-ion batteries[J]. Advanced Energy Materials, 2021, 11(7): 2003404. DOI: 10.1002/aenm.202003404. |
21 | JUNG R, METZGER M, MAGLIA F, et al. Oxygen release and its effect on the cycling stability of LiNixMnyCozO2(NMC) cathode materials for Li-ion batteries[J]. Journal of the Electrochemical Society, 2017, 164(7): A1361-A1377. DOI: 10.1149/2.0021707jes. |
22 | JUNG S K, GWON H, HONG J, et al. Understanding the degradation mechanisms of LiNi0.5Co0.2Mn0.3O2 cathode material in lithium ion batteries[J]. Advanced Energy Materials, 2014, 4(1): DOI: 10.1002/aenm.201300787. |
23 | MAHNE N, FONTAINE O, THOTIYL M O, et al. Mechanism and performance of lithium-oxygen batteries-A perspective[J]. Chemical Science, 2017, 8(10): 6716-6729. DOI: 10.1039/C7SC02519J. |
24 | 占佳琦, 邢丽丹. 锂离子电池正极材料过渡金属离子溶出的危害及抑制研究[J]. 材料研究与应用, 2023, 17(5): 902-911. DOI: 10.20038/j.cnki.mra.2023.000510. |
ZHAN J Q, XING L D. Study on the detriment and inhibition of the dissolution of transition metal ions in cathode materials of lithium-ion batteries[J]. Materials Research and Application, 2023, 17(5): 902-911. DOI: 10.20038/j.cnki.mra.2023.000510. | |
25 | ASL H Y, MANTHIRAM A. Reining in dissolved transition-metal ions[J]. Science, 2020, 369(6500): 140-141. DOI: 10.1126/science.abc5454. |
26 | LIU T C, YU L, LIU J J, et al. Understanding Co roles towards developing co-free Ni-rich cathodes for rechargeable batteries[J]. Nature Energy, 2021, 6: 277-286. DOI: 10.1038/s41560-021-00776-y. |
27 | ZHANG N S, WANG B, CHEN M, et al. Revisiting the impact of Co at high voltage for advanced nickel-rich cathode materials[J]. Energy Storage Materials, 2024, 67: 103311. DOI: 10.1016/j.ensm.2024.103311. |
28 | LASZCZYNSKI N, SOLCHENBACH S, GASTEIGER H A, et al. Understanding electrolyte decomposition of graphite/NCM811 cells at elevated operating voltage[J]. Journal of the Electrochemical Society, 2019, 166(10): A1853-A1859. DOI: 10.1149/2.0571910jes. |
29 | LIU X L, WANG S, WANG L, et al. Stabilizing the high-voltage cycle performance of LiNi0.8Co0.1Mn0.1O2 cathode material by Mg doping[J]. Journal of Power Sources, 2019, 438: 227017. DOI: 10.1016/j.jpowsour.2019.227017. |
30 | SUN H B, CAO Z L, WANG T R, et al. Enabling high rate performance of Ni-rich layered oxide cathode by uniform titanium doping[J]. Materials Today Energy, 2019, 13: 145-151. DOI: 10.1016/j.mtener.2019.05.003. |
31 | ZHAO T T, LIU P, TANG F L, et al. Design of Nb5+-doped high-nickel layered ternary cathode material and its structure stability[J]. Nanotechnology, 2023, 34(49): 495401. DOI: 10.1088/1361-6528/acf670. |
32 | TAKAMORI S, DOI T, INABA M. Aluminum doping effects on large LiNi0.8Co0.1Mn0.1O2 single crystal particles prepared in a molten LiOH-Li2SO4 flux[J]. Journal of the Electrochemical Society, 2023: DOI: 10.1149/1945-7111/acbc51. |
33 | ZHU H W, YU H F, JIANG H B, et al. High-efficiency Mo doping stabilized LiNi0.9Co0.1O2 cathode materials for rapid charging and long-life Li-ion batteries[J]. Chemical Engineering Science, 2020, 217: 115518. DOI: 10.1016/j.ces.2020.115518. |
34 | ZHA G J, HU N G, LUO Y P, et al. Reducing Ni/Li disorder and boosting electrochemical performance of LiNi0.8Co0.067Fe0.033Mn0.1O2 cathode material[J]. Journal of the Taiwan Institute of Chemical Engineers, 2023, 144: 104730. DOI: 10.1016/j.jtice.2023.104730. |
35 | LAINE P, HIETANIEMI M, VÄLIKANGAS J, et al. Co-precipitation of Mg-doped Ni0.8Co0.1Mn0.1(OH)2: Effect of magnesium doping and washing on the battery cell performance[J]. Dalton Transactions, 2023, 52(5): 1413-1424. DOI: 10.1039/d2dt02246j. |
36 | YANG J C, CHEN Y X, LI Y J, et al. A simple strategy to prepare the La2Li0.5Al0.5O4 modified high-performance Ni-rich cathode material[J]. Materials Chemistry and Physics, 2020, 249: 123135. DOI: 10.1016/j.matchemphys.2020.123135. |
37 | LYU Y, HUANG S F, LU S R, et al. Engineering of cobalt-free Ni-rich cathode material by dual-element modification to enable 4.5 V-class high-energy-density lithium-ion batteries[J]. Chemical Engineering Journal, 2023, 455: 140652. DOI: 10.1016/j.cej.2022.140652. |
38 | TAO J L, MU A N, GENG S J, et al. Influences of direction and magnitude of Mg2+ doping concentration gradient on the performance of full concentration gradient cathode material[J]. Journal of Solid State Electrochemistry, 2021, 25(7): 1959-1974. DOI: 10.1007/s10008-021-04984-0. |
39 | LIN Y, ABRAM C M, SHI X, et al. Enhanced thermal stability of aerosol-synthesized Ni-rich Li-ion battery cathode materials via concentration-gradient Ca doping[J]. ACS Applied Energy Materials, 2022, 5(9): 10751-10757. DOI: 10.1021/acsaem.2c01471. |
40 | ZHANG H L, XU J Q, ZHANG J J. Surface-coated LiNi0.8Co0.1Mn0.1O2 (NCM811) cathode materials by Al2O3, ZrO2, and Li2O-2B2O3 thin-layers for improving the performance of lithium ion batteries[J]. Frontiers in Materials, 2019, 6: 309. DOI: 10.3389/fmats. 2019.00309. |
41 | HOU Y Z, REN Y B, SHI T S, et al. The surface Al2O3 coating and bulk Zr doping drastically improve the voltage fade and cycling stability of Li(Ni0.8Mn0.1Co0.1)O2 cathode materials[J]. Journal of Alloys and Compounds, 2023, 939: 168778. DOI: 10.1016/j.jallcom.2023.168778. |
42 | KIM H K, KANG H S, SANTHOSHKUMAR P, et al. Surface modification of Ni-rich LiNi0.8Co0.1Mn0.1O2 with perovskite LaFeO3 for high voltage cathode materials[J]. RSC Advances, 2021, 11(35): 21685-21694. DOI: 10.1039/D1RA00857A. |
43 | WANG Z, WEI W, ZHANG T, et al. Perovskite oxides alleviate microstrain and anion loss of radially-aligned Ni-rich Ncm811 cathodes under high-voltage operations[J]. Small, 2024, 20(4): e2306160. DOI: 10.1002/smll.202306160. |
44 | ZHA G J, LUO Y P, HU N G, et al. Surface modification of the LiNi0.8Co0.1Mn0.1O2 cathode material by coating with FePO4 with a yolk-shell structure for improved electrochemical performance[J]. ACS Applied Materials & Interfaces, 2020, 12(32): 36046-36053. DOI: 10.1021/acsami.0c07931. |
45 | GAN Z G, LU Y, HU G R, et al. Surface modification on enhancing the high-voltage performance of LiNi0.8Co0.1Mn0.1O2 cathode materials by electrochemically active LiVPO4F hybrid[J]. Electrochimica Acta, 2019, 324: 134807. DOI: 10.1016/j.electacta.2019.134807. |
46 | RAN Q W, ZHAO H Y, HU Y Z, et al. Multifunctional integration of double-shell hybrid nanostructure for alleviating surface degradation of LiNi0.8Co0.1Mn0.1O2 cathode for advanced lithium-ion batteries at high cutoff voltage[J]. ACS Applied Materials & Interfaces, 2020, 12(8): 9268-9276. DOI: 10.1021/acsami.9b20872. |
47 | DU M L, YANG P, HE W X, et al. Enhanced high-voltage cycling stability of Ni-rich LiNi0.8Co0.1Mn0.1O2 cathode coated with Li2O-2B2O3[J]. Journal of Alloys and Compounds, 2019, 805: 991-998. DOI: 10.1016/j.jallcom.2019.07.176. |
48 | LLANOS P S, AHALIABADEH Z, MIIKKULAINEN V, et al. High voltage cycling stability of LiF-coated NMC811 electrode[J]. ACS Applied Materials & Interfaces, 2024, 16(2): 2216-2230. DOI: 10.1021/acsami.3c14394. |
49 | DONG X Y, YAO J Y, ZHU W C, et al. Enhanced high-voltage cycling stability of Ni-rich cathode materials via the self-assembly of Mn-rich shells[J]. Journal of Materials Chemistry A, 2019, 7(35): 20262-20273. DOI: 10.1039/C9TA07147D. |
50 | CHU Y Q, LAI A J, PAN Q C, et al. Construction of internal electric field to suppress oxygen evolution of Ni-rich cathode materials at a high cutoff voltage[J]. Journal of Energy Chemistry, 2022, 73: 114-125. DOI: 10.1016/j.jechem.2022.06.019. |
51 | XIE J, SENDEK A D, CUBUK E D, et al. Atomic layer deposition of stable LiAlF4 lithium ion conductive interfacial layer for stable cathode cycling[J]. ACS Nano, 2017, 11(7): 7019-7027. DOI: 10.1021/acsnano.7b02561. |
52 | ZHANG X Y, QIU Y G, CHENG F Y, et al. Realization of a high-voltage and high-rate nickel-rich NCM cathode material for LIBs by Co and Ti dual modification[J]. ACS Applied Materials & Interfaces, 2021, 13(15): 17707-17716. DOI: 10.1021/acsami. 1c03195. |
53 | WU F, LI Q, CHEN L, et al. Improving the structure stability of LiNi0.8Co0.1Mn0.1O2 by surface perovskite-like La2Ni0.5Li0.5O4 self-assembling and subsurface La3+ doping[J]. ACS Applied Materials & Interfaces, 2019, 11(40): 36751-36762. DOI: 10.1021/acsami.9b12595. |
54 | WANG L C, CHU Y Q, NONG Y T, et al. Sr-based sub/surface integrated layer and bulk doping to enhance high-voltage cycling of a Ni-rich cathode material[J]. ACS Sustainable Chemistry & Engineering, 2022, 10(24): 7883-7895. DOI: 10.1021/acssuschemeng.2c00369. |
55 | LI Y J, ZHU J, DENG S Y, et al. Towards superior cyclability of LiNi0.8Co0.1Mn0.1O2 cathode material for lithium ion batteries via synergetic effects of Sb modification[J]. Journal of Alloys and Compounds, 2019, 798: 93-103. DOI: 10.1016/j.jallcom. 2019.05.217. |
56 | KANG C Y, OH S, SHIM T Y, et al. Boosting electrochemical performance of Ni-rich layered cathode via Li2SnO3 surface coating and Sn4+ gradient doping based dual modification for lithium-ion batteries[J]. Electronic Materials Letters, 2023, 19(4): 374-383. DOI: 10.1007/s13391-023-00414-7. |
57 | TIAN J S, WANG G, ZENG W H, et al. A bimetal strategy for suppressing oxygen release of 4.6 V high-voltage single-crystal high-nickel cathode[J]. Energy Storage Materials, 2024, 68: 103344. DOI: 10.1016/j.ensm.2024.103344. |
58 | SUN Y K, CHEN Z H, NOH H J, et al. Nanostructured high-energy cathode materials for advanced lithium batteries[J]. Nature Materials, 2012, 11(11): 942-947. DOI: 10.1038/nmat3435. |
59 | ZHAO F, LI X Y, YAN Y S, et al. A three-in-one engineering strategy to achieve LiNi0.8Co0.1Mn0.1O2 cathodes with enhanced high-voltage cycle stability and high-rate capacities towards lithium storage[J]. Journal of Power Sources, 2022, 524: 231035. DOI: 10.1016/j.jpowsour.2022.231035. |
[1] | 张新新, 岑官骏, 乔荣涵, 朱璟, 郝峻丰, 孙蔷馥, 田孟羽, 金周, 詹元杰, 闫勇, 贲留斌, 俞海龙, 刘燕燕, 周洪, 黄学杰. 锂电池百篇论文点评(2024.06.01—2024.07.31)[J]. 储能科学与技术, 2024, 13(9): 3226-3244. |
[2] | 陈晓羽, 刘宇, 白一帆, 应佳俊, 吕营, 万利佳, 胡军平, 陈小玲. 镍钴氢氧化物正极材料制备及镍锌电池性能研究[J]. 储能科学与技术, 2024, 13(7): 2377-2385. |
[3] | 林炜琦, 卢巧瑜, 陈宇鸿, 邱麟媛, 季钰榕, 管联玉, 丁翔. 低温钠离子电池正极材料研究进展[J]. 储能科学与技术, 2024, 13(7): 2348-2360. |
[4] | 郝峻丰, 朱璟, 申晓宇, 岑官骏, 乔荣涵, 张新新, 田孟羽, 金周, 詹元杰, 孙蔷馥, 闫勇, 贲留斌, 俞海龙, 刘燕燕, 黄学杰. 锂电池百篇论文点评(2024.04.01—2024.05.31)[J]. 储能科学与技术, 2024, 13(7): 2361-2376. |
[5] | 李万瑞, 李文俊, 王小青, 路胜利, 徐喜连. 锌离子电池用锰/钒基氧化物异质结构正极的研究进展[J]. 储能科学与技术, 2024, 13(5): 1496-1515. |
[6] | 缪胤宝, 张文华, 刘伟昊, 王帅, 陈哲, 彭望, 曾杰. 富锂正极材料Li1.2Ni0.13Co0.13Mn0.54O2 的制备及性能[J]. 储能科学与技术, 2024, 13(5): 1427-1434. |
[7] | 朱璟, 郝峻丰, 孙蔷馥, 张新新, 申晓宇, 岑官骏, 乔荣涵, 田孟羽, 金周, 詹元杰, 闫勇, 贲留斌, 俞海龙, 刘燕燕, 黄学杰. 锂电池百篇论文点评(2024.2.1—2024.3.31)[J]. 储能科学与技术, 2024, 13(5): 1398-1416. |
[8] | 文志朋, 潘凯, 韦毅, 郭佳文, 覃善丽, 蒋雯, 吴炼, 廖欢. 磷酸锰铁锂正极材料改性研究进展[J]. 储能科学与技术, 2024, 13(3): 770-787. |
[9] | 孙蔷馥, 申晓宇, 岑官骏, 乔荣涵, 朱璟, 郝峻丰, 张新新, 田孟羽, 金周, 詹元杰, 闫勇, 贲留斌, 俞海龙, 刘燕燕, 黄学杰. 锂电池百篇论文点评(2023.12.1—2024.1.31)[J]. 储能科学与技术, 2024, 13(3): 725-741. |
[10] | 彭可, 张志成, 胡有章, 张旭辉, 周稼辉, 李彬. 基于有限元的热力耦合场匣钵运动分析与优化[J]. 储能科学与技术, 2024, 13(2): 634-642. |
[11] | 郭秀丽, 周小龙, 邹才能, 唐永炳. 水系双离子电池的研究进展与展望[J]. 储能科学与技术, 2024, 13(2): 462-479. |
[12] | 曾翠鸿, 陈秀娟, 李曼, 尹文骥, 彭继明, 胡思江, 黄有国, 王红强, 李庆余. 钠离子电池P2-Na0.6Li0.27Mn0.73O2 正极材料的W掺杂研究[J]. 储能科学与技术, 2024, 13(11): 3731-3741. |
[13] | 孙蔷馥, 岑官骏, 乔荣涵, 朱璟, 郝峻丰, 张新新, 田孟羽, 金周, 詹元杰, 闫勇, 贲留斌, 俞海龙, 刘燕燕, 周洪, 黄学杰. 锂电池百篇论文点评(2024.8.1—2024.9.30)[J]. 储能科学与技术, 2024, 13(11): 4207-4225. |
[14] | 李顺, 黄建国, 何桂金. 木质素基碳/硫纳米球复合材料作为高性能锂硫电池正极材料[J]. 储能科学与技术, 2024, 13(1): 270-278. |
[15] | 杜文, 王君雷, 徐运飞, 李世龙, 王昆. 火焰喷雾热解法生产锂离子电池高镍三元正极材料的技术经济分析[J]. 储能科学与技术, 2024, 13(1): 345-357. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||