储能科学与技术 ›› 2024, Vol. 13 ›› Issue (11): 4207-4225.doi: 10.19799/j.cnki.2095-4239.2024.0982

• 热点点评 • 上一篇    下一篇

锂电池百篇论文点评(2024.8.12024.9.30

孙蔷馥1(), 岑官骏1, 乔荣涵1, 朱璟1, 郝峻丰1, 张新新1, 田孟羽2, 金周2, 詹元杰2, 闫勇2, 贲留斌1,2, 俞海龙1, 刘燕燕1, 周洪3, 黄学杰1,2()   

  1. 1.中国科学院物理研究所,北京 100190
    2.松山湖材料实验室,广东 东莞 523890
    3.中国科学院武汉文献情报中心,湖北 武汉 430071
  • 收稿日期:2024-10-21 出版日期:2024-11-28 发布日期:2024-11-27
  • 通讯作者: 黄学杰 E-mail:sunqiangfu22@mails.ucas.ac.cn;xjhuang@iphy.ac.cn
  • 作者简介:孙蔷馥(2000—),女,硕士研究生,研究方向为锂离子电池,E-mail:sunqiangfu22@mails.ucas.ac.cn

Reviews of selected 100 recent papers for lithium batteries (Aug. 1, 2024 to Sep. 30, 2024)

Qiangfu SUN1(), Guanjun CEN1, Ronghan QIAO1, Jing ZHU1, Junfeng HAO1, Xinxin ZHANG1, Mengyu TIAN2, Zhou JIN2, Yuanjie ZHAN2, Yong YAN2, Liubin BEN1,2, Hailong YU1, Yanyan LIU1, Hong ZHOU3, Xuejie HUANG1,2()   

  1. 1.Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
    2.Songshan Lake Materials Laboratory, Dongguan 523890, Guangdong, China
    3.National Science Library (Wuhan), Chinese Academy of Sciences, Wuhan 430071, Hubei, China
  • Received:2024-10-21 Online:2024-11-28 Published:2024-11-27
  • Contact: Xuejie HUANG E-mail:sunqiangfu22@mails.ucas.ac.cn;xjhuang@iphy.ac.cn

摘要:

本文是一篇近两月的锂电池文献评述,以“lithium”和“batter*”为关键词检索了Web of Science从2024年8月1日至2024年9月30日上线的锂电池研究论文,共有6182篇,选择其中100篇加以评论。正极材料的研究集中于高镍三元、钴酸锂的掺杂改性和表面包覆,以及它们在长循环过程中的结构演变等。负极材料的研究重点包括硅基负极材料制备优化和黏结剂的制备以缓冲体积变化、复合金属锂负极的制备和界面构筑与调控。固态电解质的研究主要包括氯化物固态电解质和聚合物固态电解质的结构设计以及相关性能研究,电解液研究则主要包括不同电解质盐和溶剂对各类电池材料体系适配的研究,以及对新的功能性添加剂的探索。针对固态电池,正极材料的体相改性和表面包覆、复合正极制备与界面修饰、锂金属负极的界面构筑和三维结构设计有多篇文献报道。锂硫电池的研究重点是硫正极的结构设计、功能涂层和电解液的改进,固态锂硫电池也引起了广泛注意。电池工艺技术方面的研究包括干法等电极制备技术、电池安全性、电池回收等的研究。表征分析涵盖了正极材料的结构相变、锂沉积负极的界面演变等。理论模拟工作是关于无机固体电解质中离子输运的研究。

关键词: 锂电池, 正极材料, 负极材料, 电解质, 电池技术

Abstract:

This bimonthly review paper highlights 100 recent published papers on lithium batteries. We searched the Web of Science and found 6213 papers online from Aug. 1, 2024 to Sep. 30, 2024. 100 of them were selected to be highlighted. The selected papers of cathode materials focus on high-nickel ternary layered oxides and LiCO2, and the effects of doping, interface modifications and their structural evolution with prolonged cycling are investigated. For anode materials, silicon-based composite materials are improved by optimized electrode structure and using new binders to mitigate the effects of volume changes. Efforts have also been devoted to designing composite metal lithium anode and controlling the inhomogeneous plating of lithium. The relation of structure design and performances of chloride-based and polymer-based solid-state electrolytes has been extensively studied. Different combinations of solvents, lithium salts, and functional additives are used for liquid electrolytes to meet the requirements for battery applications. For solid-state batteries, the modification and surface coating of the cathode, the design of composite cathode, the anode/electrolyte interface and 3D anode have been widely investigated. Studies on lithium-sulfur batteries are mainly focused on the structural design of the cathode and the development of functional coating and electrolytes, and solid state lithium-sulfur battery has also drawn large attentions. Dry coating technology for electrodes is developed for Li-ion batteries. Also the safety and recycling of Li-ion batteries are concerned. There are a few papers for the characterization techniques of the structural transition of cathode materials and the interfacial evolution of lithium deposition, while theoretical simulations are devoted to the study of ion transport in solid state electrolytes.

Key words: lithium batteries, cathode material, anode material, solid state electrolyte, battery technology

中图分类号: