储能科学与技术 ›› 2024, Vol. 13 ›› Issue (11): 4207-4225.doi: 10.19799/j.cnki.2095-4239.2024.0982
孙蔷馥1(), 岑官骏1, 乔荣涵1, 朱璟1, 郝峻丰1, 张新新1, 田孟羽2, 金周2, 詹元杰2, 闫勇2, 贲留斌1,2, 俞海龙1, 刘燕燕1, 周洪3, 黄学杰1,2()
收稿日期:
2024-10-21
出版日期:
2024-11-28
发布日期:
2024-11-27
通讯作者:
黄学杰
E-mail:sunqiangfu22@mails.ucas.ac.cn;xjhuang@iphy.ac.cn
作者简介:
孙蔷馥(2000—),女,硕士研究生,研究方向为锂离子电池,E-mail:sunqiangfu22@mails.ucas.ac.cn;
Qiangfu SUN1(), Guanjun CEN1, Ronghan QIAO1, Jing ZHU1, Junfeng HAO1, Xinxin ZHANG1, Mengyu TIAN2, Zhou JIN2, Yuanjie ZHAN2, Yong YAN2, Liubin BEN1,2, Hailong YU1, Yanyan LIU1, Hong ZHOU3, Xuejie HUANG1,2()
Received:
2024-10-21
Online:
2024-11-28
Published:
2024-11-27
Contact:
Xuejie HUANG
E-mail:sunqiangfu22@mails.ucas.ac.cn;xjhuang@iphy.ac.cn
摘要:
本文是一篇近两月的锂电池文献评述,以“lithium”和“batter*”为关键词检索了Web of Science从2024年8月1日至2024年9月30日上线的锂电池研究论文,共有6182篇,选择其中100篇加以评论。正极材料的研究集中于高镍三元、钴酸锂的掺杂改性和表面包覆,以及它们在长循环过程中的结构演变等。负极材料的研究重点包括硅基负极材料制备优化和黏结剂的制备以缓冲体积变化、复合金属锂负极的制备和界面构筑与调控。固态电解质的研究主要包括氯化物固态电解质和聚合物固态电解质的结构设计以及相关性能研究,电解液研究则主要包括不同电解质盐和溶剂对各类电池材料体系适配的研究,以及对新的功能性添加剂的探索。针对固态电池,正极材料的体相改性和表面包覆、复合正极制备与界面修饰、锂金属负极的界面构筑和三维结构设计有多篇文献报道。锂硫电池的研究重点是硫正极的结构设计、功能涂层和电解液的改进,固态锂硫电池也引起了广泛注意。电池工艺技术方面的研究包括干法等电极制备技术、电池安全性、电池回收等的研究。表征分析涵盖了正极材料的结构相变、锂沉积负极的界面演变等。理论模拟工作是关于无机固体电解质中离子输运的研究。
中图分类号:
孙蔷馥, 岑官骏, 乔荣涵, 朱璟, 郝峻丰, 张新新, 田孟羽, 金周, 詹元杰, 闫勇, 贲留斌, 俞海龙, 刘燕燕, 周洪, 黄学杰. 锂电池百篇论文点评(2024.8.1—2024.9.30)[J]. 储能科学与技术, 2024, 13(11): 4207-4225.
Qiangfu SUN, Guanjun CEN, Ronghan QIAO, Jing ZHU, Junfeng HAO, Xinxin ZHANG, Mengyu TIAN, Zhou JIN, Yuanjie ZHAN, Yong YAN, Liubin BEN, Hailong YU, Yanyan LIU, Hong ZHOU, Xuejie HUANG. Reviews of selected 100 recent papers for lithium batteries (Aug. 1, 2024 to Sep. 30, 2024)[J]. Energy Storage Science and Technology, 2024, 13(11): 4207-4225.
1 | LEE K E, KIM Y, KIM J S, et al. Comparison study of a thermal-driven microstructure in a high-Ni cathode for lithium-ion batteries: Critical calcination temperature for polycrystalline and single-crystalline design[J]. ACS Applied Materials & Interfaces, 2024, 16(18): 23150-23159. DOI: 10.1021/acsami.4c00514. |
2 | YANG T H, ZHANG K, ZUO Y X, et al. Ultrahigh-nickel layered cathode with cycling stability for sustainable lithium-ion batteries[J]. Nature Sustainability, 2024, 7: 1204-1214. DOI: 10.1038/s41893-024-01402-x. |
3 | ADAMO J B, MANTHIRAM A. Understanding the effects of AlandMndoping on theH2-H3phase transition in high-nickel layered oxide cathodes[J]. Chemistry of Materials, 2024, 36(12): 6226-6236. DOI: 10.1021/acs.chemmater.4c01033. |
4 | BI Z H, YI Z L, ZHANG A P, et al. A surface-to-bulk tuning deep delithiation strategy for 5C fast-charging 4.6 V LiCoO2[J]. Energy & Environmental Science, 2024, 17(15): 5706-5718. DOI: 10. 1039/D4EE01674B. |
5 | TIAN Y N, LI Y Y, SHEN H S, et al. Regulation of interface ion transport by electron ionic conductor construction toward high-voltage and high-rate LiNi0.5Co0.2Mn0.3O2 cathodes in lithium ion battery[J]. Advanced Science, 2024, 11(30): e2402380. DOI: 10.1002/advs.202402380. |
6 | ZHANG Y J, UGATA Y, CAMPÉON B L, et al. Unlocking electrode performance of disordered rocksalt oxides through structural defect engineering and surface stabilization with concentrated electrolyte[J]. Advanced Energy Materials, 2024, 14(23): 2304074. DOI: 10.1002/aenm.202304074. |
7 | HUANG Y M, DONG Y H, YANG Y, et al. Integrated rocksalt–polyanion cathodes with excess lithium and stabilized cycling[J]. Nature Energy, 2024. DOI: 10.1038/s41560-024-01615-6. |
8 | YAN Z L, YI S, WANG Z, et al. Atomic-level regulation of SiC4 units enable high Li+ dynamics and long-life micro-size SiCx anodes[J]. Advanced Energy Materials, 2024: 2400598. DOI: 10.1002/aenm.202400598. |
9 | GUPTA A, BADAM R, MANTRIPRAGADA B S, et al. Ultra-durability and reversible capacity of silicon anodes with crosslinked poly-BIAN binder in lithium-ion secondary batteries for sturdy performance[J]. Advanced Sustainable Systems, 2024: 2400263. DOI: 10.1002/adsu.202400263. |
10 | BAI M, TANG X Y, ZHANG M, et al. An in situ polymerization strategy for gel polymer electrolyte Si||Ni-rich lithium-ion batteries[J]. Nature Communications, 2024, 15(1): 5375. DOI: 10.1038/s41467-024-49713-z. |
11 | CAO L, CHU M J, LI Y, et al. In situ-constructed multifunctional composite anode with ultralong-life toward advanced lithium-metal batteries[J]. Advanced Materials, 2024: 2406034. DOI: 10.1002/adma.202406034. |
12 | ZHANG S Q, LI R H, DENG T, et al. Oscillatory solvation chemistry for a 500 Wh kg-1 Li-metal pouch cell[J]. Nature Energy, 2024. DOI: 10.1038/s41560-024-01621-8. |
13 | SCHÖNER S, SCHMIDT D, CHEN X C, et al. Chemical prelithiated3Dlithiophilic /-phobic interlayer enables long-term Li plating/stripping[J]. ACS Nano, 2024, 18(27): 17924-17938. DOI: 10.1021/acsnano.4c04507. |
14 | GAO J C, YAN X R, GU X Y, et al. The alkynyl π bond of sp-C enhanced rapid, reversible Li-C coupling to accelerate reaction kinetics of lithium ions[J]. Journal of the American Chemical Society, 2024, 146(39): 27030-27039. DOI: 10.1021/jacs.4c08920. |
15 | MA B C, LI R H, ZHU H T, et al. Stable oxyhalide-nitride fast ionic conductors for all-solid-state Li metal batteries[J]. Advanced Materials, 2024, 36(30): 2402324. DOI: 10.1002/adma. 202402324. |
16 | ROM C L, YOX P, CARDOZA A M, et al. Expanding the phase space for halide-based solid electrolytes: Li-Mg-Zr-Cl spinels[J]. Chemistry of Materials, 2024, 36(15): 7283-7291. DOI: 10. 1021/acs.chemmater.4c01160. |
17 | SHEN L, LI J L, KONG W J, et al. Anion-engineering toward high-voltage-stable halide superionic conductors for all-solid-state lithium batteries[J]. Advanced Functional Materials, 2024: 2408571. DOI: 10.1002/adfm.202408571. |
18 | YE Y, GENG J Z, ZUO D X, et al. High-voltage long-cycling all-solid-state lithium batteries with high-valent-element-doped halide electrolytes[J]. ACS Nano, 2024, 18(28): 18368-18378. DOI: 10.1021/acsnano.4c02678. |
19 | FENG G, MA Q Y, LUO D, et al. Designing cooperative ion transport pathway in ultra-thin solid-state electrolytes toward practical lithium metal batteries[J]. Angewandte Chemie (International Ed), 2024: e202413306. DOI: 10.1002/anie. 202413306. |
20 | FENG J W, WANG J Y, GU Q, et al. 1µm-thick robust gel polymer electrolyte with excellent interfacial stability for high-performance Li metal batteries[J]. Advanced Functional Materials, 2024: 2412287. DOI: 10.1002/adfm.202412287. |
21 | ZHANG Y X, YU X H, LI X X, et al. LLZTO crosslinks form a highly stretchable self-healing network for fast healable all-solid lithium metal batteries[J]. Chemical Engineering Journal, 2024, 497: 154397. DOI: 10.1016/j.cej.2024.154397. |
22 | GAO H J, CHEN Y F, TENG T, et al. Interface engineering via manipulating solvation chemistry for liquid lithium-ion batteries Operated≥100 ℃[J]. Angewandte Chemie (International Ed), 2024, 63(43): e202410982. DOI: 10.1002/anie.202410982. |
23 | LI J X, LI C Y, YAO Y T, et al. In situ polymerized flame-retardant crosslinked quasi solid-state electrolytes for high-voltage lithium metal batteries[J]. Advanced Energy Materials, 2024: 2402362. DOI: 10.1002/aenm.202402362. |
24 | KO S, MATSUOKA A, CHEN W T, et al. Multifunctional cyclic phosphoramidate solvent for safe lithium-ion batteries[J]. ACS Energy Letters, 2024, 9(7): 3628-3635. DOI: 10.1021/acsenergylett.4c01579. |
25 | KO Y, BAE J, CHEN G, et al. Topological considerations in electrolyte additives for passivating silicon anodes with hybrid solid-electrolyte interphases[J]. ACS Energy Letters, 2024, 9(7): 3448-3455. DOI: 10.1021/acsenergylett.4c01331. |
26 | XIA Z Y, ZHOU K, LIN X Y, et al. Rationally designing electrolyte additives for highly improving cyclability of LiNi0.5Mn1.5O4/Graphite cells[J]. Journal of Energy Chemistry, 2024, 91: 266-275. DOI: 10.1016/j.jechem.2023.11.045. |
27 | LIU X X, LI Y, LIU J D, et al. 570 Wh kg⁻1-grade lithium metal pouch cell with 4.9 V highly Li+ conductive armor-like cathode electrolyte interphase via partially fluorinated electrolyte engineering[J]. Advanced Materials, 2024, 36(24): 2401505. DOI: 10.1002/adma.202401505. |
28 | ZENG X Y, GAO X, ZHOU P Q, et al. Eliminating H2O/HF and regulating interphase with bifunctional tolylene-2, 4-diisocyanate (TDI) additive for long life Li-ion battery[J]. Journal of Energy Chemistry, 2024, 95: 519-528. DOI: 10.1016/j.jechem. 2024. 03.062. |
29 | WU D X, ZHU C L, WANG H P, et al. Mechanically and thermally stable cathode electrolyte interphase enables high-temperature, high-voltage Li||LiCoO2 batteries[J]. Angewandte Chemie (International Ed), 2024, 63(7): e202315608. DOI: 10.1002/anie. 202315608. |
30 | DUAN S H, ZHANG S Q, LI Y, et al. H-transfer mediated self-enhanced interphase for high-voltage lithium-ion batteries[J]. ACS Energy Letters, 2024, 9(7): 3578-3586. DOI: 10.1021/acsenergylett.4c00917. |
31 | WANG Y, DONG S Y, GAO Y F, et al. Difluoroester solvent toward fast-rate anion-intercalation lithium metal batteries under extreme conditions[J]. Nature Communications, 2024, 15(1): 5408. DOI: 10.1038/s41467-024-49795-9. |
32 | LI A M, WANG Z Y, LEE T, et al. Asymmetric electrolyte design for high-energy lithium-ion batteries with micro-sized alloying anodes[J]. Nature Energy, 2024. DOI: 10.1038/s41560-024-01619-2. |
33 | AZMI R, LINDGREN F, STOKES-RODRIGUEZ K, et al. An XPS study of electrolytes for Li-ion batteries in full cell LNMO vs Si/graphite[J]. ACS Applied Materials & Interfaces, 2024, 16(26): 34266-34280. DOI: 10.1021/acsami.4c01891. |
34 | LIU Y K, YU T, XU S, et al. Constructing an oxyhalide interface for 4.8 V-tolerant high-nickel cathodes in all-solid-state lithium-ion batteries[J]. Angewandte Chemie (International Ed), 2024, 63(33): e202403617. DOI: 10.1002/anie.202403617. |
35 | LIN C X, LIU Y, SU H, et al. Elevating cycle stability and reaction kinetics in Ni-rich cathodes through tailored bulk and interface chemistry for sulfide-based all-solid-state lithium batteries[J]. Advanced Functional Materials, 2024, 34(21): 2311564. DOI: 10. 1002/adfm.202311564. |
36 | LI C, LIN Y, LIU J, et al. Liquid-phase preparation of low-tortuosity composite cathode for high active material content all-solid-state lithium batteries[J]. Advanced Energy Materials, 2024, 14(31): 2400985. DOI: 10.1002/aenm.202400985. |
37 | KONG X K, GU R, JIN Z Z, et al. Maximizing interface stability in all-solid-state lithium batteries through entropy stabilization and fast kinetics[J]. Nature Communications, 2024, 15(1): 7247. DOI: 10.1038/s41467-024-51123-0. |
38 | KIM S, KIM M, KU M J, et al. Coating robust layers on Ni-rich cathode active materials while suppressing cation mixing for all-solid-state lithium-ion batteries[J]. ACS Nano, 2024, 18(36): 25096-25106. DOI: 10.1021/acsnano.4c06720. |
39 | CHEN K, TANG Y P, ZHANG S Q, et al. Promoted stability and reaction kinetics in Ni-rich cathodes via mechanical fusing multifunctional LiZr2(PO4)3 nanocrystals for high mass loading all-solid-state lithium batteries[J]. ACS Applied Materials & Interfaces, 2024, 16(34): 45459-45472. DOI: 10.1021/acsami. 4c08319. |
40 | CUI L F, ZHANG S, JU J W, et al. A cathode homogenization strategy for enabling long-cycle-life all-solid-state lithium batteries[J]. Nature Energy, 2024. DOI: 10.1038/s41560-024-01596-6 |
41 | VUONG T H L, MASTOI N R, NAM J S, et al. Accelerating ionic–electronic percolation pathways via catecholate coordination of bioinspired-polymer dopamine in all-solid-state composite cathode[J]. Chemical Engineering Journal, 2024, 497: 154534. DOI: 10.1016/j.cej.2024.154534. |
42 | SAQIB K S, EMBLETON T J, CHOI J H, et al. Understanding the carbon additive/sulfide solid electrolyte interface in nickel-rich cathode composites and prioritizing the corresponding interplay between the electrical and ionic conductive networks to enhance all-solid-state-battery rate capability[J]. ACS Applied Materials & Interfaces, 2024, 16(36): 47551-47562. DOI: 10.1021/acsami. 4c08670. |
43 | ASPINALL J, SADA K, GUO H, et al. The impact of magnesium content on lithium-magnesium alloy electrode performance with argyrodite solid electrolyte[J]. Nature Communications, 2024, 15(1): 4511. DOI: 10.1038/s41467-024-48071-0. |
44 | WU D X, PENG J, JIANG Z W, et al. Low-pressure dendrite-free sulfide solid-state battery with 3D LiSi@Li-Phen-Ether anode[J]. Energy Storage Materials, 2024, 72: 103749. DOI: 10.1016/j.ensm.2024.103749. |
45 | LEE K, SAKAMOTO J. Li stripping behavior of anode-free solid-state batteries under intermittent-current discharge conditions[J]. Advanced Energy Materials, 2024, 14(17): 2303571. DOI: 10. 1002/aenm.202303571. |
46 | KIM S Y, BAK S M, JUN K, et al. Revealing dynamic evolution of the anode-electrolyte interphase in all-solid-state batteries with excellent cyclability[J]. Advanced Energy Materials, 2024, 14(27): 2401299. DOI: 10.1002/aenm.202401299. |
47 | XIA Q, YUAN S G, ZHANG Q, et al. Designing the interface layer of solid electrolytes for all-solid-state lithium batteries[J]. Advanced Science, 2024, 11(29): e2401453. DOI: 10.1002/advs. 202401453. |
48 | CHO S, KIM Y, SONG Y, et al. Functional polymer thin films for establishing an effective electrode interface in sulfide-based solid-state batteries[J]. Advanced Functional Materials, 2024, 34(32): 2314710. DOI: 10.1002/adfm.202314710. |
49 | ZHANG C, YU J M, CUI Y Y, et al. An electron-blocking interface for garnet-based quasi-solid-state lithium-metal batteries to improve lifespan[J]. Nature Communications, 2024, 15(1): 5325. DOI: 10.1038/s41467-024-49715-x. |
50 | CAO S L, NING J, HE X, et al. In situ plasma polymerization of self-stabilized polythiophene enables dendrite-free lithium metal anodes with ultra-long cycle life[J]. Small, 2024, 20(31): 2311204. DOI: 10.1002/smll.202311204. |
51 | WANG X Y, XU X Y, HOU W S, et al. Electro-chemo-mechanical design of buffer layer enhances electrochemical performance of all-solid-state lithium batteries[J]. Advanced Energy Materials, 2024: 2402731. DOI: 10.1002/aenm.202402731. |
52 | CHOI J H, KO K, WON S J, et al. Important consideration for interface engineering of carbon-based materials in sulfide all-solid lithium-ion batteries[J]. Energy Storage Materials, 2024, 71: 103653. DOI: 10.1016/j.ensm.2024.103653. |
53 | WANG Z L, SHEN X F, CHEN S J, et al. Large-scale fabrication of stable silicon anode in air for sulfide solid state batteries via ionic-electronic dual conductive binder[J]. Advanced Materials, 2024, 36(32): e2405025. DOI: 10.1002/adma.202405025. |
54 | DU L M, WU Z, PANG B, et al. Dendrite-free Li5.5PS4.5Cl1.5-based all-solid-state lithium battery enabled by grain boundary electronic insulation strategy through in situ polymer encapsulation[J]. ACS Applied Materials & Interfaces, 2024, 16(20): 26288-26298. DOI: 10.1021/acsami.4c04393. |
55 | MEROLA L, SINGH V K, PALMER M, et al. Evaluation of Oxide|Sulfide heteroionic interface stability for developing solid-state batteries with a lithium–metal electrode: The case of LLZO|Li6PS5Cl and LLZO|Li7P3S11[J]. ACS Applied Materials & Interfaces, 2024, 16(40): 54847-54863. DOI: 10.1021/acsami. 4c11597. |
56 | ZHANG Z, FAN W Q, CUI K X, et al. Design of ultrathin asymmetric composite electrolytes for interfacial stable solid-state lithium-metal batteries[J]. ACS Nano, 2024, 18(27): 17890-17900. DOI: 10.1021/acsnano.4c04429. |
57 | ZHANG Z, GOU J R, CUI K X, et al. 12.6 μm-thick asymmetric composite electrolyte with superior interfacial stability for solid-state lithium-metal batteries[J]. Nano-Micro Letters, 2024, 16(1): 181. DOI: 10.1007/s40820-024-01389-2. |
58 | YANG B B, DENG C L, CHEN N, et al. Super-ionic conductor soft filler promotes Li+ transport in integrated cathode-electrolyte for solid-state battery at room temperature[J]. Advanced Materials, 2024, 36(27): e2403078. DOI: 10.1002/adma.202403078. |
59 | LV Q, LI C, LIU Y, et al. In-situ polymerized high-voltage solid-state lithium metal batteries with dual-reinforced stable interfaces[J]. ACS Nano, 2024, 18(34): 23253-23264. DOI: 10.1021/acsnano.4c06057. |
60 | DENG D R, XIONG H J, LUO Y L, et al. Accelerating the rate-determining steps of sulfur conversion reaction for lithium-sulfur batteries working at an ultrawide temperature range[J]. Advanced Materials, 2024: 2406135. DOI: 10.1002/adma.202406135. |
61 | GENG C N, JIANG X, HONG S, et al. Unveiling the role of electric double-layer in sulfur catalysis for batteries[J]. Advanced Materials, 2024, 36(38): e2407741. DOI: 10.1002/adma. 202407741. |
62 | KUNG C Y, CHIANG Y P, CHAN T C, et al. Enhanced performance of lithium–Sulfur cells via novel nano-sized iron-plated sulfur composites[J]. Journal of Power Sources, 2024, 622: 235365. DOI: 10.1016/j.jpowsour.2024.235365. |
63 | LI M, HUANG Z M, LIANG Y H, et al. Accelerating lithium-ion transfer and sulfur conversion via electrolyte engineering for ultra-stable all-solid-state lithium-sulfur batteries[J]. Advanced Functional Materials, 2024: 2413580. DOI: 10.1002/adfm. 202413580. |
64 | LIU H Y, WU Z R, WANG H, et al. Chelating-type binders toward stable cycling and high-safety transition-metal sulfide-based lithium batteries[J]. ACS Energy Letters, 2024, 9(9): 4666-4672. DOI: 10.1021/acsenergylett.4c01907. |
65 | SI M J, JIAN X F, XIE Y, et al. A highly damping, crack-insensitive and self-healable binder for lithium-sulfur battery by tailoring the viscoelastic behavior[J]. Advanced Energy Materials, 2024, 14(14): 2303991. DOI: 10.1002/aenm.202303991. |
66 | ZHU X X, JIANG W, WANG L G, et al. Constructing resilient cross-linked network toward stable all-solid-state lithium-sulfur batteries[J]. Advanced Energy Materials, 2024, 14(17): 2304244. DOI: 10.1002/aenm.202304244. |
67 | WANG L J, YUE K, QIAO Q Q, et al. In situ self-polymerization of thioctic acid enabled interphase engineering towards high-performance lithium–sulfur battery[J]. Advanced Energy Materials, 2024: 2402617. DOI: 10.1002/aenm.202402617. |
68 | ZHANG H W, ZHANG Y D, CAO C, et al. Lithium–sulfur pouch cells with 99% capacity retention for 1000 cycles[J]. Energy & Environmental Science, 2024, 17(19): 7047-7057. DOI: 10.1039/D4EE02149E. |
69 | GAO J, GAO Y, HAO J H, et al. Activating redox kinetics of Li2S via Cu+, I- co-doping toward high-performance all-solid-state lithium sulfide-based batteries[J]. Small, 2024: e2404171. DOI: 10.1002/smll.202404171. |
70 | SHOU Y Q, OU J Y, LI C R, et al. Achieving highly reversible all-solid-state lithium-sulfur batteries through metal–sulfur bonding regulation[J]. ACS Materials Letters, 2024, 6(10): 4545-4554. DOI: 10.1021/acsmaterialslett.4c01416. |
71 | ZHOU J B, HOLEKEVI CHANDRAPPA M L, TAN S, et al. Healable and conductive sulfur iodide for solid-state Li–S batteries[J]. Nature, 2024, 627: 301-305. DOI: 10.1038/s41586-024-07101-z. |
72 | CHANG M Y, JIA J J, LIU G Z, et al. A LiI doped MoS6 composite for room temperature all-solid-state lithium batteries[J]. Chemical Communications, 2024, 60(81): 11580-11583. DOI: 10.1039/D4CC04395B. |
73 | JIN T W, LIANG K Y, YU J H, et al. Enhanced cycling stability of all-solid-state lithium-sulfur battery through nonconductive polar hosts[J]. Nano Letters, 2024, 24(22): 6625-6633. DOI: 10.1021/acs.nanolett.4c01210. |
74 | CHA J, KIM S, NAKATE U T, et al. Highly conductive composite cathode prepared by dry process using Nafion-Li ionomer for sulfide-based all-solid-state lithium batteries[J]. Journal of Power Sources, 2024, 613: 234914. DOI: 10.1016/j.jpowsour. 2024. 234914. |
75 | CHEN B, ZHANG Z, WU C G, et al. Aliphatic polycarbonate-based binders for high-loading cathodes by solvent-free method used in high performance LiFePO4|Li batteries[J]. Materials, 2024, 17(13): 3153. DOI: 10.3390/ma17133153. |
76 | HE Y C, SHI Z P, LIU M C, et al. Optimizing li plating behavior via controlling areal capacity of a cathode for cycling stability on 600 Wh kg-1 Lithium-metal batteries[J]. ACS Applied Materials & Interfaces, 2024, 16(26): 33475-33484. DOI: 10.1021/acsami. 4c04859. |
77 | YANG H, LIU X Y, ZHENG J, et al. Mitigating overcharge in ampere-hour-level anode-free pouch cells by improving pressure uniformity[J]. ACS Energy Letters, 2024, 9(9): 4331-4338. DOI: 10.1021/acsenergylett.4c01569. |
78 | WANG J, FENG X N, YU Y Z, et al. Rapid temperature-responsive thermal regulator for safety management of battery modules[J]. Nature Energy, 2024, 9: 939-946. DOI: 10.1038/s41560-024-01535-5. |
79 | LU C H, JIANG H B, CHENG X R, et al. High-performance fibre battery with polymer gel electrolyte[J]. Nature, 2024, 629(8010): 86-91. DOI: 10.1038/s41586-024-07343-x. |
80 | YANG S J, YUAN H, YAO N, et al. Intrinsically safe lithium metal batteries enabled by thermo-electrochemical compatible in situ polymerized solid-state electrolytes[J]. Advanced Materials, 2024, 36(35): 2405086. DOI: 10.1002/adma.202405086. |
81 | ZHANG Y X, YAO N, TANG X Y, et al. Upcycling of high-rate Ni-rich cathodes through intrinsic structural features[J]. Advanced Energy Materials, 2024: 2402918. DOI: 10.1002/aenm. 202402918. |
82 | CHA J Y, HONG J, KIM M, et al. Quantification of single crystallinity in single crystal cathodes for lithium-ion batteries[J]. Journal of Materials Chemistry A, 2024, 12(16): 9863-9870. DOI: 10.1039/D4TA00039K. |
83 | DING Y, LI Y, XU R Y, et al. Cross-scale deciphering thermal failure process of Ni-rich layered cathode[J]. Nano Energy, 2024, 126: 109685. DOI: 10.1016/j.nanoen.2024.109685. |
84 | GUO Z Z, CUI Z H, MANTHIRAM A. Reducing the initial capacity loss in high-nickel cathodes with a higher upper cut-off voltage formation cycle protocol[J]. ACS Energy Letters, 2024, 9(7): 3316-3323. DOI: 10.1021/acsenergylett.4c01027. |
85 | MIN J H, SUK W, WONG S C Y, et al. Single-particle electrochemical cycling single-crystal and polycrystalline NMC particles[J]. Advanced Functional Materials, 2024: 2410241. DOI: 10.1002/adfm.202410241. |
86 | RAJU K, WHEATCROFT L, LAI M C, et al. Influence of cathode calendering density on the cycling stability of Li-ion batteries using NMC811 single or poly crystalline particles[J]. Journal of the Electrochemical Society, 2024, 171(8): 080519. DOI: 10.1149/1945-7111/ad6378. |
87 | ARIFIADI A, DEMELASH F, ABKE N M, et al. Assessment of "inverse" cross-talk (anode to cathode) in high-voltage Li/Mn-rich layered oxide Li cells[J]. Advanced Functional Materials, 2024: 2413958. DOI: 10.1002/adfm.202413958. |
88 | CHEN Y, HUANG L, ZHOU D L, et al. Elucidating and minimizing the space-charge layer effect between NCM cathode and Li6PS5Cl for sulfide-based solid-state lithium batteries[J]. Advanced Energy Materials, 2024, 14(30): 2304443. DOI: 10. 1002/aenm.202304443. |
89 | LEE H, SEOK J, CHUNG C, et al. Impact of high-temperature storage on capacity fading of Ni-rich cathodes in sulfide-based all-solid-state batteries[J]. Chemical Engineering Journal, 2024, 498: 154903. DOI: 10.1016/j.cej.2024.154903. |
90 | LI F, WU Y C, CHENG X B, et al. Unraveling the interfacial compatibility of ultrahigh nickel cathodes and chloride solid electrolyte for stable all-solid-state lithium batteries[J]. Energy & Environmental Science, 2024, 17(12): 4187-4195. DOI: 10.1039/D4EE01302F. |
91 | SAKKA Y, MATSUMOTO M, YAMASHIGE H, et al. Investigating plastic deformation between silicon and solid electrolyte in all-solid-state batteries using operando X-ray tomography[J]. Journal of the Electrochemical Society, 2024, 171(7): 070536. DOI: 10.1149/1945-7111/ad63d0. |
92 | BI C X, YAO N, LI X Y, et al. Unveiling the reaction mystery between lithium polysulfides and lithium metal anode in lithium–sulfur batteries[J]. Advanced Materials, 2024: 2411197. DOI: 10.1002/adma.202411197. |
93 | FUJITA Y, MÜNCH K, ASAKURA T, et al. Dynamic volume change of Li2S-based active material and the influence of stacking pressure on capacity in all-solid-state batteries[J]. Chemistry of Materials, 2024, 36(15): 7533-7540. DOI: 10.1021/acs.chemmater.4c01514. |
94 | LIU C L, ROTERS F, RAABE D. Role of grain-level chemo-mechanics in composite cathode degradation of solid-state lithium batteries[J]. Nature Communications, 2024, 15(1): 7970. DOI: 10.1038/s41467-024-52123-w. |
95 | DONG L W, YAN H J, LIU Q X, et al. Quantification of charge transport and mass deprivation in solid electrolyte interphase for kinetically-stable low-temperature lithium-ion batteries[J]. Angewandte Chemie International Edition, 2024: e202411029. DOI: 10.1002/anie.202411029. |
96 | KIM S S, KITCHAEV D A, PATHERIA E S, et al. Cation vacancies enable anion redox in Li cathodes[J]. Journal of the American Chemical Society, 2024, 146(30): 20951-20962. DOI: 10.1021/jacs.4c05769. |
97 | FU K, LI X Y, SUN K, et al. Rational design of thick electrodes in lithium-ion batteries by re-understanding the relationship between thermodynamics and kinetics[J]. Advanced Functional Materials, 2024: 2409623. DOI: 10.1002/adfm.202409623. |
98 | FRIE F, DITLER H, KLICK S, et al. An analysis of calendaric aging over 5 years of Ni-rich 18650-cells with Si/C anodes[J]. ChemElectroChem, 2024, 11(9). DOI: 10.1002/celc.202400020. |
99 | JO S, SEO S, KANG S K, et al. Thermal runaway mechanism in Ni-rich cathode full cells of lithium-ion batteries: The role of multidirectional crosstalk[J]. Advanced Materials, 2024, 36(31): e2402024. DOI: 10.1002/adma.202402024. |
100 | LIMON M S R, AHMAD Z. Heterogeneity in point defect distribution and mobility in solid ion conductors[J]. ACS Applied Materials & Interfaces, 2024, 16(38): 50948-50960. DOI: 10.1021/acsami.4c12128. |
[1] | 陈星光, 沈逸凡, 邵裕新, 郑岳久, 孙涛, 来鑫, 沈凯, 韩雪冰. 面向实车应用的磷酸铁锂电池容量辨识及特异性优化方法研究[J]. 储能科学与技术, 2024, 13(9): 2963-2971. |
[2] | 黎耀康, 杨海东, 徐康康, 蓝昭宇, 章润楠. 基于加权UMAP和改进BLS的锂电池温度预测[J]. 储能科学与技术, 2024, 13(9): 3006-3015. |
[3] | 焦君宇, 张全權, 陈宁波, 王冀钰, 芦秋迪, 丁浩浩, 彭鹏, 宋孝河, 张帆, 郑家新. 电池大数据智能分析平台的研发与应用[J]. 储能科学与技术, 2024, 13(9): 3198-3213. |
[4] | 刘莹, 孙丙香, 赵鑫泽, 张珺玮. 基于电热耦合模型的宽温域锂离子电池SOC/SOP联合估计[J]. 储能科学与技术, 2024, 13(9): 3030-3041. |
[5] | 周国兵, 许审镇. 锂金属负极固态电解质界面膜形成和生长机理的理论研究进展[J]. 储能科学与技术, 2024, 13(9): 3150-3160. |
[6] | 张新新, 岑官骏, 乔荣涵, 朱璟, 郝峻丰, 孙蔷馥, 田孟羽, 金周, 詹元杰, 闫勇, 贲留斌, 俞海龙, 刘燕燕, 周洪, 黄学杰. 锂电池百篇论文点评(2024.06.01—2024.07.31)[J]. 储能科学与技术, 2024, 13(9): 3226-3244. |
[7] | 孔妍妍, 张熊, 安亚斌, 李晨, 孙现众, 王凯, 马衍伟. MOF衍生多孔碳基材料的制备及其在锂离子电容器负极中的应用进展[J]. 储能科学与技术, 2024, 13(8): 2665-2678. |
[8] | 杨凯悦, 谢欣兵, 杜晓钟. 基于离散元法的锂电池极片辊压过程探究[J]. 储能科学与技术, 2024, 13(8): 2570-2579. |
[9] | 陈峥, 杨博, 赵志刚, 申江卫, 肖仁鑫, 夏雪磊. 考虑锂电池温度和老化的荷电状态估算[J]. 储能科学与技术, 2024, 13(8): 2813-2822. |
[10] | 张结雨, 张顺, 李宁, 曾芳磊, 丁建宁. 阻燃凝胶聚合物电解质的制备及其性能研究[J]. 储能科学与技术, 2024, 13(8): 2529-2540. |
[11] | 许超锋, 韩晓蕾, 王进芝, 王晓君, 刘治明, 赵井文. 基于弱配位环境的晶态锌离子固态电解质[J]. 储能科学与技术, 2024, 13(8): 2519-2528. |
[12] | 姚远, 宗若奇, 盖建丽. 钠离子电池锑基及铋基金属负极材料研究进展[J]. 储能科学与技术, 2024, 13(8): 2649-2664. |
[13] | 范利君, 吴保周, 陈珂君. 不同形貌FeS2 的可控制备及储钠特性研究[J]. 储能科学与技术, 2024, 13(8): 2541-2549. |
[14] | 周洪, 辛竹琳, 付豪, 张强, 魏凤. 基于专利数据挖掘的固态锂电池关键材料分析[J]. 储能科学与技术, 2024, 13(7): 2386-2398. |
[15] | 陈晓羽, 刘宇, 白一帆, 应佳俊, 吕营, 万利佳, 胡军平, 陈小玲. 镍钴氢氧化物正极材料制备及镍锌电池性能研究[J]. 储能科学与技术, 2024, 13(7): 2377-2385. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||