1 |
LI W, KLEMEŠ J J, WANG Q W, et al. Salt hydrate–based gas-solid thermochemical energy storage: Current progress, challenges, and perspectives[J]. Renewable and Sustainable Energy Reviews, 2022, 154: 111846. DOI: 10.1016/j.rser.2021.111846.
|
2 |
AGENCY I E. World energy outlook 2022[M]. Paris: OECD, 2022. DOI: 10.1787/3a469970-en
|
3 |
罗伊默, 芮金金, 徐薇, 等. 热化学储热反应器内水合盐物性调控及传热传质优化研究进展[J]. 储能科学与技术, 2021, 10(4): 1273-1284. DOI: 10.19799/j.cnki.2095-4239.2021.0026.
|
|
LUO Y M, RUI J J, XU W, et al. Research progress on physical property control and heat and mass transfer optimization of hydrated salt in thermochemical heat storage reactor[J]. Energy Storage Science and Technology, 2021, 10(4): 1273-1284. DOI: 10.19799/j.cnki.2095-4239.2021.0026.
|
4 |
AYDIN D, CASEY S P, RIFFAT S. The latest advancements on thermochemical heat storage systems[J]. Renewable and Sustainable Energy Reviews, 2015, 41: 356-367. DOI: 10.1016/j.rser.2014.08.054.
|
5 |
PINEL P, CRUICKSHANK C A, BEAUSOLEIL-MORRISON I, et al. A review of available methods for seasonal storage of solar thermal energy in residential applications[J]. Renewable and Sustainable Energy Reviews, 2011, 15(7): 3341-3359. DOI: 10.1016/j.rser.2011.04.013.
|
6 |
VAN ALEBEEK R, SCAPINO L, BEVING M A J M, et al. Investigation of a household-scale open sorption energy storage system based on the zeolite 13X/water reacting pair[J]. Applied Thermal Engineering, 2018, 139: 325-333. DOI: 10.1016/j.applthermaleng.2018.04.092.
|
7 |
TATSIDJODOUNG P, LE PIERRÈS N, HEINTZ J, et al. Experimental and numerical investigations of a zeolite 13X/water reactor for solar heat storage in buildings[J]. Energy Conversion and Management, 2016, 108: 488-500. DOI: 10.1016/j.enconman. 2015.11.011.
|
8 |
TREZZA G, BERGAMASCO L, FASANO M, et al. Minimal crystallographic descriptors of sorption properties in hypothetical MOFs and role in sequential learning optimization[J]. NPJ Computational Materials, 2022, 8: 123. DOI: 10.1038/s41524-022-00806-7.
|
9 |
宋建华. 沸石床吸附储热性能的数值模拟与分析[D]. 北京: 北京工业大学, 2008.
|
|
SONG J H. Numerical simulation and analysis of adsorption and heat storage performance of zeolite bed[D]. Beijing: Beijing University of Technology, 2008.
|
10 |
HASTÜRK E, ERNST S J, JANIAK C. Recent advances in adsorption heat transformation focusing on the development of adsorbent materials[J]. Current Opinion in Chemical Engineering, 2019, 24: 26-36. DOI: 10.1016/j.coche.2018.12.011.
|
11 |
CARRILLO A J, GONZÁLEZ-AGUILAR J, ROMERO M, et al. Solar energy on demand: A review on high temperature thermochemical heat storage systems and materials[J]. Chemical Reviews, 2019, 119(7): 4777-4816. DOI: 10.1021/acs.chemrev. 8b00315.
|
12 |
CASCETTA M, CAU G, PUDDU P, et al. Numerical investigation of a packed bed thermal energy storage system with different heat transfer fluids[J]. Energy Procedia, 2014, 45: 598-607. DOI: 10.1016/j.egypro.2014.01.064.
|
13 |
ELSARRAG E, ALI E E M, JAIN S. Design guidelines and performance study on a structured packed liquid desiccant air-conditioning system[J]. HVAC&R Research, 2005, 11(2): 319-337. DOI: 10.1080/10789669.2005.10391140.
|
14 |
ZHANG H, LIU S L, SHUKLA A, et al. Thermal performance study of thermochemical reactor using net-packed method[J]. Renewable Energy, 2022, 182: 483-493. DOI: 10.1016/j.renene. 2021.09.115.
|
15 |
HAN X J, LIU S L, ZENG C, et al. Investigating the performance enhancement of copper fins on trapezoidal thermochemical reactor[J]. Renewable Energy, 2020, 150: 1037-1046. DOI: 10.1016/j.renene.2019.11.052.
|
16 |
GAEINI M, WIND R, DONKERS P A J, et al. Development of a validated 2D model for flow, moisture and heat transport in a packed bed reactor using MRI experiment and a lab-scale reactor setup[J]. International Journal of Heat and Mass Transfer, 2017, 113: 1116-1129. DOI: 10.1016/j.ijheatmasstransfer.2017.06.034.
|
17 |
ZENG Z Y, ZHAO B C, CHEN W D, et al. Strategies of stable thermal output and humidity dual control for a packed-bed adsorption thermal battery[J]. Energy, 2023, 278: 127978. DOI: 10.1016/j.energy.2023.127978.
|
18 |
ZENG C, LIU S L, SHUKLA A, et al. Numerical modelling of the operational effects on the thermochemical reactor performance[J]. Energy and Buildings, 2021, 230: 110535. DOI: 10.1016/j.enbuild.2020.110535.
|
19 |
ZHANG Y N, DONG H H, WANG R Z, et al. Air humidity assisted sorption thermal battery governed by reaction wave model[J]. Energy Storage Materials, 2020, 27: 9-16. DOI: 10.1016/j.ensm. 2020.01.012.
|
20 |
LIN Y C, FAN Y B, CHEN S, et al. Wave analysis method for air humidity assisted sorption thermal battery: A new perspective[J]. Energy Conversion and Management, 2023, 277: 116638. DOI: 10.1016/j.enconman.2022.116638.
|
21 |
GLUECKAUF E, COATES J I. 241. Theory of chromatography. Part IV. The influence of incomplete equilibrium on the front boundary of chromatograms and on the effectiveness of separation[J]. Journal of the Chemical Society (Resumed), 1947: 1315. DOI: 10.1039/jr9470001315.
|
22 |
HELALY H O, AWAD M M, EL-SHARKAWY I I, et al. Theoretical and experimental investigation of the performance of adsorption heat storage system[J]. Applied Thermal Engineering, 2019, 147: 10-28. DOI: 10.1016/j.applthermaleng.2018.10.059.
|
23 |
GEANKOPLIS C J. Transport processes and separation process principles[M]. New Jersey: Prentice Hall PTR, 2003.
|
24 |
令狐友强, 徐德厚, 岳秀艳, 等. 沸石-液态水吸附储热系统的释热特性[J]. 储能科学与技术, 2021, 10(3): 1103-1108. DOI: 10.19799/j.cnki.2095-4239.2021.0028.
|
|
LINGHU Y Q, XU D H, YUE X Y, et al. Study on characteristics of the discharge process for zeolite-liquid water adsorption heat storage system[J]. Energy Storage Science and Technology, 2021, 10(3): 1103-1108. DOI: 10.19799/j.cnki.2095-4239. 2021.0028.
|
25 |
葛继翔, 纪明希, 丁玉龙, 等. 水合盐热化学反应器参数优化与供暖应用案例分析[J]. 储能科学与技术, 2023, 12(12): 3799-3807. DOI: 10.19799/j.cnki.2095-4239.2023.0686.
|
|
GE J X, JI M X, DING Y L, et al. Parameter optimization of a thermochemical reactor using salt hydrates: A case study of heating application[J]. Energy Storage Science and Technology, 2023, 12(12): 3799-3807. DOI: 10.19799/j.cnki.2095-4239.2023.0686.
|