储能科学与技术 ›› 2024, Vol. 13 ›› Issue (12): 4396-4405.doi: 10.19799/j.cnki.2095-4239.2024.1066

• 热化学储能专刊 • 上一篇    下一篇

水合盐热化学反应器多因素耦合作用下的性能研究

王乐霄1,2(), 罗伊默1,2(), 王利明1,2, 杨格桑1,2   

  1. 1.湖南大学土木工程学院
    2.湖南大学建筑安全与节能教育部重点实验室,湖南 长沙 410082
  • 收稿日期:2024-11-13 修回日期:2024-11-22 出版日期:2024-12-28 发布日期:2024-12-23
  • 通讯作者: 罗伊默 E-mail:lexiaowang@hnu.edu.cn;yimoluo@hnu.edu.cn
  • 作者简介:王乐霄(2000—),女,硕士研究生,研究方向为水合盐跨季节储热供暖系统,E-mail:lexiaowang@hnu.edu.cn
  • 基金资助:
    国家自然科学基金项目(52478089)

Research on the performance of thermal storage reactor with salt hydrates under multifactor interactions

Lexiao WANG1,2(), Yimo LUO1,2(), Liming WANG1,2, Gesang YANG1,2   

  1. 1.Faculty of Civil Engineering, Hunan University
    2.Key Laboratory of Building Safety and Energy Efficiency of the Ministry of Education, Hunan University, Changsha 410082, Hunan, China
  • Received:2024-11-13 Revised:2024-11-22 Online:2024-12-28 Published:2024-12-23
  • Contact: Yimo LUO E-mail:lexiaowang@hnu.edu.cn;yimoluo@hnu.edu.cn

摘要:

水合盐热化学储热技术具有储能密度高、长时储存热损小等特点,是缓解太阳能应用于建筑时供需不匹配的有效手段之一。其中水合盐热化学反应器的操作条件和结构对其性能影响很大,目前研究主要开展了单一因素的影响分析,分析不够深入且缺乏对多因素耦合作用下反应器性能的研究。因此,本工作建立了一种水合盐储热反应器的动态仿真模型,并搭建实验平台开展了实验研究。与实验结果相比,脱/吸附过程反应器出口温度模拟值的平均绝对误差MAE和最大绝对误差MAXE分别为1.55/1.57 ℃和7.68/3.35 ℃,证明了该模型的准确性。利用以上模型,本工作系统分析了进口温湿度、质量流量及反应器体积等因素对反应器性能的影响,并采用多元线性回归分析了多因素耦合作用对反应器性能的影响。结果表明,进口温度是脱附反应最大温升、反应时间的主要影响因素,其影响系数分别为0.497和-3.04;进口相对湿度对吸附反应的影响最显著,增加进口相对湿度可提高反应最大温升,缩短反应时间;温度与湿度综合作用对反应影响最大,远超两因素的单独作用,且它们对反应时间的影响大于最大温升。此外,温度、湿度和体积的综合影响也较大,对吸附反应时间的影响系数为0.0959,是其他因素综合作用的7~240倍。

关键词: 热化学储热, 数值模拟, 影响因素, 多元线性回归

Abstract:

Thermochemical energy storage using hydrated salts offers high energy density and minimal thermal losses over extended storage periods, making it a viable solution for balancing supply and demand in solar energy applications for buildings. The performance of thermal storage reactors using salt hydrates is heavily influenced by their operational conditions and structural design. However, most studies have analyzed single factors, providing limited understanding of reactor performance under multifactor interactions. To address this gap, we developed and experimentally validated a dynamic simulation model for a thermal storage reactor with salt hydrates. The model demonstrated high accuracy, achieving mean absolute errors and maximum absolute errors of 1.55 ℃ and 1.57 ℃, and 7.68 ℃ and 3.35 ℃, for desorption and adsorption outlet temperatures, respectively. Using this model, we conducted systematic analyses of how inlet temperature, inlet relative humidity, mass flow rate, and reactor volume influence reactor performance. In addition, multiple linear regression was applied to evaluate the impacts of multifactor interactions on reactor performance. The results indicated that inlet temperature is the primary factor influencing both the maximum temperature rise during desorption and the reaction time, with influence coefficients of 0.497 and -3.04, respectively. For adsorption reactions, inlet relative humidity had the most significant impact, with higher humidity boosting the maximum temperature rise and shortening reaction time. Furthermore, the combined influence of temperature and humidity exerted the greatest impact on reactions than their individual effects, particularly on reaction time. Finally, the combined effects of temperature, humidity, and reactor volume demonstrated a pronounced impact on the adsorption reaction time, with an influence coefficient of 0.0959, which was 7—240 times greater than that of various other combinations.

Key words: thermochemical heat storage, numerical simulation, influencing factors, multiple linear regression

中图分类号: