储能科学与技术 ›› 2024, Vol. 13 ›› Issue (3): 788-824.doi: 10.19799/j.cnki.2095-4239.2023.0826

• 储能材料与器件 • 上一篇    下一篇

镁基固态储氢材料的研究进展

梁宸曦1(), 王振斌1,2, 张明锦1,2(), 马存花1,2(), 梁宁3,4   

  1. 1.青海师范大学化学化工学院,青海 西宁 810016
    2.青海省人民政府-北京师范大学高原科学与可持续发展研究院,青海 西宁 810008
    3.河南省地质矿产勘查开发局第三地质勘查院,河南 郑州 451450
    4.河南省金属矿产深孔钻探工程技术研究中心,河南 郑州 450003
  • 收稿日期:2023-11-16 修回日期:2023-12-07 出版日期:2024-03-28 发布日期:2024-03-28
  • 通讯作者: 张明锦,马存花 E-mail:1658548263@qq.com;zhangmingjin@qhnu.edu.cn;20211001@qhnu.edu.cn
  • 作者简介:梁宸曦(2000—),男,硕士研究生,研究方向为镁基储氢材料,E-mail:1658548263@qq.com

Research progress on magnesium-based solid hydrogen storage nanomaterials

Chenxi LIANG1(), Zhenbin WANG1,2, Mingjin ZHANG1,2(), Cunhua MA1,2(), Ning LIANG3,4   

  1. 1.School of Chemistry and Chemical Engineering, Qinghai Normal University, Xining 810016, Qinghai, China
    2.Academy of Plateau Science and Sustainability, People's Government of Qinghai Province-Beijing Normal University, Xining, 810008, Qinghai, China
    3.The Third Geological Exploration Institute of Henan Bureau of Geology and Mineral Resources Exploration and Development, Zhengzhou 451450, Henan, China
    4.Henan Metal Mineral Deep Hole Drilling Engineering Technology Research Center, Zhengzhou 450003, Henan, China
  • Received:2023-11-16 Revised:2023-12-07 Online:2024-03-28 Published:2024-03-28
  • Contact: Mingjin ZHANG, Cunhua MA E-mail:1658548263@qq.com;zhangmingjin@qhnu.edu.cn;20211001@qhnu.edu.cn

摘要:

氢能有望成为脱碳时代的“理想燃料”。高性能储氢材料的发现、开发和改性是未来发展固态储氢和氢能源利用的关键。而氢化镁(MgH2)具有储氢能力强、自然储量丰富、环境友好等特点,在固态储氢材料领域备受关注。但是氢化镁较高的热力学稳定性、缓慢的动力学性能,以及循环过程中不可避免的团聚和粗化等问题在一定程度上限制了镁基固态储氢材料的大规模投产和实际应用。近年来,大量研究工作聚焦于镁基储氢材料的热/动力学改性,目前已经取得了大量的成果。本文通过回顾国内外相关文献,综述了改善镁基固态储氢材料储氢性能的最新研究进展,着重介绍了合金化、纳米化、引入催化剂等改性策略,阐述了不同策略具体的改性机理。最后对未来的发展方向进行了展望,旨在为高性能镁基储氢材料的研发提供借鉴与指导。

关键词: 固态储氢材料, 氢化镁, 合金化, 纳米化, 催化剂

Abstract:

Hydrogen energy is expected to become the "ideal fuel" in the era of decarbonization; therefore, the discovery, development, and modification of high-performance hydrogen storage materials are critical to the development of solid-state hydrogen storage and hydrogen energy use. Magnesium hydride (MgH2) has attracted significant attention as a solid hydrogen storage material because of its strong hydrogen storage capacity, abundant natural reserves, and environmental friendly characteristics. However, the high thermodynamic stability, slow kinetic performance, and inevitable agglomeration and coiling during magnesium-hydride cycling limit the large-scale production and practical application of magnesium-based solid hydrogen storage materials. In recent years, several studies have focused on the thermal and kinetic modification of Mg-based hydrogen storage materials, leading to numerous achievements. This review discusses the latest research on magnesium-based solid hydrogen storage materials and summarizes modification strategies, such as alloying, nanification, and introduction of catalysts. Considering the current problems, future development directions are proposed to provide reference and guidance for the research and development of high-performance magnesium-based hydrogen storage materials.

Key words: solid hydrogen storage materials, magnesium hydride, alloying, nanification, catalysts

中图分类号: