储能科学与技术 ›› 2024, Vol. 13 ›› Issue (3): 788-824.doi: 10.19799/j.cnki.2095-4239.2023.0826
梁宸曦1(), 王振斌1,2, 张明锦1,2(), 马存花1,2(), 梁宁3,4
收稿日期:
2023-11-16
修回日期:
2023-12-07
出版日期:
2024-03-28
发布日期:
2024-03-28
通讯作者:
张明锦,马存花
E-mail:1658548263@qq.com;zhangmingjin@qhnu.edu.cn;20211001@qhnu.edu.cn
作者简介:
梁宸曦(2000—),男,硕士研究生,研究方向为镁基储氢材料,E-mail:1658548263@qq.com;
Chenxi LIANG1(), Zhenbin WANG1,2, Mingjin ZHANG1,2(), Cunhua MA1,2(), Ning LIANG3,4
Received:
2023-11-16
Revised:
2023-12-07
Online:
2024-03-28
Published:
2024-03-28
Contact:
Mingjin ZHANG, Cunhua MA
E-mail:1658548263@qq.com;zhangmingjin@qhnu.edu.cn;20211001@qhnu.edu.cn
摘要:
氢能有望成为脱碳时代的“理想燃料”。高性能储氢材料的发现、开发和改性是未来发展固态储氢和氢能源利用的关键。而氢化镁(MgH2)具有储氢能力强、自然储量丰富、环境友好等特点,在固态储氢材料领域备受关注。但是氢化镁较高的热力学稳定性、缓慢的动力学性能,以及循环过程中不可避免的团聚和粗化等问题在一定程度上限制了镁基固态储氢材料的大规模投产和实际应用。近年来,大量研究工作聚焦于镁基储氢材料的热/动力学改性,目前已经取得了大量的成果。本文通过回顾国内外相关文献,综述了改善镁基固态储氢材料储氢性能的最新研究进展,着重介绍了合金化、纳米化、引入催化剂等改性策略,阐述了不同策略具体的改性机理。最后对未来的发展方向进行了展望,旨在为高性能镁基储氢材料的研发提供借鉴与指导。
中图分类号:
梁宸曦, 王振斌, 张明锦, 马存花, 梁宁. 镁基固态储氢材料的研究进展[J]. 储能科学与技术, 2024, 13(3): 788-824.
Chenxi LIANG, Zhenbin WANG, Mingjin ZHANG, Cunhua MA, Ning LIANG. Research progress on magnesium-based solid hydrogen storage nanomaterials[J]. Energy Storage Science and Technology, 2024, 13(3): 788-824.
表1
气、液、固态储氢方式的比较"
储氢类型 | 气态储氢 | 液态储氢 | 固态储氢 |
---|---|---|---|
储氢原理 | 通过压缩、吸附等方式将氢气储存于钢瓶中 | 将氢气冷却到20 K,进行液化储存 | 使用固体材料,通过物理或化学吸附实现吸氢 |
储氢密度 (质量分数) | 1%~5%(含气瓶) | 5.5%(含储罐) | 1.4%~20% |
优点 | 1. 吸放氢速度快 2. 能在零下几十度环境下工作 | 1. 液态氢密度高 2. 储氢量大 | 1. 储氢量大 2. 不易爆炸,安全性好 3. 储存、运输方便 4. 多数材料可循环使用 |
缺点 | 1. 易泄漏,危险系数高 2. 储氢量低 | 1. 液化过程氢的热值损耗20%~30% 2. 需要苛刻的绝热条件 | 1. 储氢量与吸放氢温度不能兼顾 2. 多数材料使用前需要进行循环活化 |
表3
一些镁合金的相应储氢参数"
合金 | 脱氢活化能Ea/(kJ/mol) | 初始脱氢温度T/℃ | 脱氢焓ΔH/(kJ/mol) | 脱氢量/%(质量分数) | 文献 |
---|---|---|---|---|---|
Gd5Mg80Ni15 | 75.07 | 280 | 75.1 | 4.87 | [ |
Mg90Ce3Ni7 | 72.2 | 100 | 80.0 | 3.5 | [ |
Mg98Ni1.67La0.33 | 107.26 | 175 | — | 5.59 | [ |
Mg90Ce5Sm5 | 106 | 300 | 81.2 | 4.95 | [ |
Mg96Y2Zn2 | 166.504 | 389 | — | 6.2 | [ |
Mg80Ni10La64 | 70.30 | 278.4 | — | 4.7 | [ |
Mg22Y3Ni9C | 66.13 | 235.1 | 64.29 | 2.8 | [ |
AlMg2TiZn | 148 | 310 | 76 | 1.4 | [ |
表7
部分金属与碳基复合催化剂改性的MgH2 的储氢性能汇总表"
材料 | 脱氢Ea/(kJ/mol) | 初始脱氢T/℃ | 脱氢ΔH/(kJ/mol) | 脱氢量/%(质量分数) | 文献 |
---|---|---|---|---|---|
MgH2-Co/Pd@BCNTs MgH2-Ni3ZnC0.7/CNT MgH2+Fe–Ni@3DG MgH2- CoNi@C | 76.66 84.22 83.8 78.5 | 198.9 110 — 173 | — 75.17 72.2 — | 6.35 5.36 5.13 5.83 | [ [ [ [ |
MgH2-ML-Ti3C2 | 99 | 142 | — | 6.45 | [ |
MgH2-NbTiC | 80 | 195 | — | 5.8 | [ |
MgH2-PrF3/Ti3C2 | 78.11 | 180 | — | 7.0 | [ |
MgH2-V2C | 87.6 | 190 | 73.6 | 6.4 | [ |
1 | TARHAN C, ALI ÇIL M. A study on hydrogen, the clean energy of the future: Hydrogen storage methods[J]. Journal of Energy Storage, 2021, 40: 102676. |
2 | ISHAQ H, DINCER I, CRAWFORD C. A review on hydrogen production and utilization: Challenges and opportunities[J]. International Journal of Hydrogen Energy, 2022, 47(62): 26238-26264. |
3 | SIMOES S G, CATARINO J, PICADO A, et al. Water availability and water usage solutions for electrolysis in hydrogen production[J]. Journal of Cleaner Production, 2021, 315: 128124. |
4 | AKANDE O, LEE B. Plasma steam methane reforming (PSMR) using a microwave torch for commercial-scale distributed hydrogen production[J]. International Journal of Hydrogen Energy, 2022, 47(5): 2874-2884. |
5 | LEE J E, SHAFIQ I, HUSSAIN M, et al. A review on integrated thermochemical hydrogen production from water[J]. International Journal of Hydrogen Energy, 2022, 47(7): 4346-4356. |
6 | KAMAT P V, SIVULA K. Celebrating 50 years of photocatalytic hydrogen generation[J]. ACS Energy Letters, 2022, 7(9): 3149-3150. |
7 | CUI P Z, YAO D, MA Z Y, et al. Life cycle water footprint comparison of biomass-to-hydrogen and coal-to-hydrogen processes[J]. Science of the Total Environment, 2021, 773: 145056. |
8 | LIU J J, MA Y, YANG J G, et al. Recent advance of metal borohydrides for hydrogen storage[J]. Frontiers in Chemistry, 2022, 10: 945208. |
9 | LI J Q, LI J C L, PARK K, et al. Investigation on the changes of pressure and temperature in high pressure filling of hydrogen storage tank[J]. Case Studies in Thermal Engineering, 2022, 37: 102143. |
10 | LAMB K E, WEBB C J. A quantitative review of slurries for hydrogen storage–Slush hydrogen, and metal and chemical hydrides in carrier liquids[J]. Journal of Alloys and Compounds, 2022, 906: 164235. |
11 | JIANG L J. Expediting the innovation and application of solid hydrogen storage technology[J]. Engineering, 2021, 7(6): 731-733. |
12 | ZHONG H, WANG H, LIU J W, et al. Enhanced hydrolysis properties and energy efficiency of MgH2-base hydrides[J]. Journal of Alloys and Compounds, 2016, 680: 419-426. |
13 | ZHANG Y H, WEI X, ZHANG W, et al. Effect of milling duration on hydrogen storage thermodynamics and kinetics of Mg-based alloy[J]. International Journal of Hydrogen Energy, 2020, 45(58): 33832-33845. |
14 | LAI Q W, PASKEVICIUS M, SHEPPARD D A, et al. Hydrogen storage materials for mobile and stationary applications: Current state of the art[J]. ChemSusChem, 2015, 8(17): 2789-2825. |
15 | BARDHAN R, RUMINSKI A M, BRAND A, et al. Magnesium nanocrystal-polymer composites: A new platform for designer hydrogen storage materials[J]. Energy & Environmental Science, 2011, 4(12): 4882-4895. |
16 | PARK J H, PARK S J. Expansion of effective pore size on hydrogen physisorption of porous carbons at low temperatures with high pressures[J]. Carbon, 2020, 158: 364-371. |
17 | GIZER G, CAO H J, PUSZKIEL J, et al. Enhancement effect of bimetallic amide K2Mn(NH2)4 and In-situ formed KH and Mn4N on the dehydrogenation/hydrogenation properties of Li-Mg-N-H system[J]. Energies, 2019, 12(14): 2779. |
18 | CHEN P, XIONG Z T, WU G T, et al. Metal-N-H systems for the hydrogen storage[J]. Scripta Materialia, 2007, 56(10): 817-822. |
19 | LUO Y M, SUN L X, XU F, et al. Improved hydrogen storage of LiBH4 and NH3BH3 by catalysts[J]. Journal of Materials Chemistry A, 2018, 6(17): 7293-7309. |
20 | MANOHARAN K, PALANISWAMY V K, RAMAN K, et al. Investigation of solid state hydrogen storage performances of novel NaBH4/Ah-BN nanocomposite as hydrogen storage medium for fuel cell applications[J]. Journal of Alloys and Compounds, 2021, 860: 158444. |
21 | WEI S, LIU J X, XIA Y P, et al. Remarkable catalysis of spinel ferrite XFe2O4 (X=Ni, Co, Mn, Cu, Zn) nanoparticles on the dehydrogenation properties of LiAlH4: An experimental and theoretical study[J]. Journal of Materials Science & Technology, 2022, 111: 189-203. |
22 | ZHU J Y, MAO Y C, WANG H, et al. Reaction route optimized LiBH4 for high reversible capacity hydrogen storage by tunable surface-modified AlN[J]. ACS Applied Energy Materials, 2020, 3(12): 11964-11973. |
23 | ETIEMBLE A, IDRISSI H, ROUÉ L. On the decrepitation mechanism of MgNi and LaNi5-based electrodes studied by in situ acoustic emission[J]. Journal of Power Sources, 2011, 196(11): 5168-5173. |
24 | KO W S, PARK K B, PARK H K. Density functional theory study on the role of ternary alloying elements in TiFe-based hydrogen storage alloys[J]. Journal of Materials Science & Technology, 2021, 92: 148-158. |
25 | LI Q, PENG X D, PAN F S. Magnesium-based materials for energy conversion and storage[J]. Journal of Magnesium and Alloys, 2021, 9(6): 2223-2224. |
26 | HUANG Y J, CHENG Y H, ZHANG J Y. A review of high density solid hydrogen storage materials by pyrolysis for promising mobile applications[J]. Industrial & Engineering Chemistry Research, 2021, 60(7): 2737-2771. |
27 | CHEN X H, YANG H, PAN F S. A special editor's issue on Mg-based functional materials: Design and development[J]. Journal of Magnesium and Alloys, 2021, 9(6): 1835-1836. |
28 | LI Q, LU Y F, LUO Q, et al. Thermodynamics and kinetics of hydriding and dehydriding reactions in Mg-based hydrogen storage materials[J]. Journal of Magnesium and Alloys, 2021, 9(6): 1922-1941. |
29 | DUAN C W, TIAN Y T, WANG X Y, et al. Ni-CNTs as an efficient confining framework and catalyst for improving dehydriding/rehydriding properties of MgH2[J]. Renewable Energy, 2022, 187: 417-427. |
30 | ZHANG X, LIU Y F, REN Z H, et al. Realizing 6.7 wt% reversible storage of hydrogen at ambient temperature with non-confined ultrafine magnesium hydrides[J]. Energy & Environmental Science, 2021, 14(4): 2302-2313. |
31 | LU Z Y, YU H J, LU X, et al. Two-dimensional vanadium nanosheets as a remarkably effective catalyst for hydrogen storage in MgH2[J]. Rare Metals, 2021, 40(11): 3195-3204. |
32 | DING X, CHEN R R, ZHANG J X, et al. Recent progress on enhancing the hydrogen storage properties of Mg-based materials via fabricating nanostructures: A critical review[J]. Journal of Alloys and Compounds, 2022, 897: 163137. |
33 | LI Z Y, SUN Y J, ZHANG C C, et al. Optimizing hydrogen ad/desorption of Mg-based hydrides for energy-storage applications[J]. Journal of Materials Science & Technology, 2023, 141: 221-235. |
34 | ALMATROUK H S, CHIHAIA V, ALEXIEV V. Density functional study of the thermodynamic properties and phase diagram of the magnesium hydride[J]. Calphad, 2018, 60: 7-15. |
35 | LUIGGI A N J. Electronic, elastic, and topological behavior of MgH2, MgTiH4, and TiH2 under pressure[J]. Materials Today Communications, 2021, 28: 102639. |
36 | EDALATI K, KITABAYASHI K, IKEDA Y, et al. Bulk nanocrystalline gamma magnesium hydride with low dehydrogenation temperature stabilized by plastic straining via high-pressure torsion[J]. Scripta Materialia, 2018, 157: 54-57. |
37 | SHANG Y Y, PISTIDDA C, GIZER G, et al. Mg-based materials for hydrogen storage[J]. Journal of Magnesium and Alloys, 2021, 9(6): 1837-1860. |
38 | REN L, LI Y H, ZHANG N, et al. Nanostructuring of Mg-based hydrogen storage materials: Recent advances for promoting key applications[J]. Nano-Micro Letters, 2023, 15(1): 93. |
39 | MARINELLI M, SANTARELLI M. Hydrogen storage alloys for stationary applications[J]. Journal of Energy Storage, 2020, 32: 101864. |
40 | FLORIANO R, ZEPON G, EDALATI K, et al. Hydrogen storage properties of new A3B2-type TiZrNbCrFe high-entropy alloy[J]. International Journal of Hydrogen Energy, 2021, 46(46): 23757-23766. |
41 | CHEN X Y, XU J, ZHANG W R, et al. Effect of Mn on the long-term cycling performance of AB5-type hydrogen storage alloy[J]. International Journal of Hydrogen Energy, 2021, 46(42): 21973-21983. |
42 | LUO Q, GUO Y L, LIU B, et al. Thermodynamics and kinetics of phase transformation in rare earth–magnesium alloys: A critical review[J]. Journal of Materials Science & Technology, 2020, 44: 171-190. |
43 | MARQUES F, BALCERZAK M, WINKELMANN F, et al. Review and outlook on high-entropy alloys for hydrogen storage[J]. Energy & Environmental Science, 2021, 14(10): 5191-5227. |
44 | YONG H, WEI X, HU J F, et al. Influence of Fe@C composite catalyst on the hydrogen storage properties of Mg–Ce–Y based alloy[J]. Renewable Energy, 2020, 162: 2153-2165. |
45 | POZZO M, ALFÈ D. Hydrogen dissociation and diffusion on transition metal (=Ti, Zr, V, Fe, Ru, Co, Rh, Ni, Pd, Cu, Ag)-doped Mg(0001) surfaces[J]. International Journal of Hydrogen Energy, 2009, 34(4): 1922-1930. |
46 | POLETAEV A A, DENYS R V, SOLBERG J K, et al. Microstructural optimization of LaMg12 alloy for hydrogen storage[J]. Journal of Alloys and Compounds, 2011, 509: S633-S639. |
47 | REILLY J J Jr, WISWALL R H Jr. Reaction of hydrogen with alloys of magnesium and copper[J]. Inorganic Chemistry, 1967, 6(12): 2220-2223. |
48 | REILLY J J Jr, WISWALL R H Jr. Reaction of hydrogen with alloys of magnesium and nickel and the formation of Mg2NiH4[J]. Inorganic Chemistry, 1968, 7(11): 2254-2256. |
49 | AKIYAMA T, ISOGAI H, YAGI J. Hydriding combustion synthesis for the production of hydrogen storage alloy[J]. Journal of Alloys and Compounds, 1997, 252(1/2): L1-L4. |
50 | LI L Q, AKIYAMA T, YAGI J I. Effect of hydrogen pressure on the combustion synthesis of Mg2NiH4[J]. Intermetallics, 1999, 7(2): 201-205. |
51 | SHAO H Y, ASANO K, ENOKI H, et al. Preparation and hydrogen storage properties of nanostructured Mg-Ni BCC alloys[J]. Journal of Alloys and Compounds, 2009, 477(1/2): 301-306. |
52 | TAN Y J, MAO Q F, SU W, et al. Remarkable hydrogen storage properties at low temperature of Mg-Ni composites prepared by hydriding combustion synthesis and mechanical milling[J]. RSC Advances, 2015, 5(78): 63202-63208. |
53 | NI J L, ZHU Y F, ZHANG J G, et al. Air exposure improving hydrogen desorption behavior of Mg-Ni-based hydrides[J]. International Journal of Hydrogen Energy, 2023, 48(58): 22183-22191. |
54 | ZHANG J G, YAO L L, LIU W Q, et al. An exciting synergistic effect: Realizing large-sized MgH2 dehydrogenation at lowered temperatures by locally assembling a heterophase composite[J]. Materials Today Energy, 2019, 14: 100345. |
55 | ANDREASEN A. Hydrogenation properties of Mg-Al alloys[J]. International Journal of Hydrogen Energy, 2008, 33(24): 7489-7497. |
56 | CHEN X, ZOU J X, ZENG X Q, et al. Hydrogen storage in Mg2Fe(Ni)H6 nanowires synthesized from coarse-grained Mg and nano sized γ-Fe(Ni) precursors[J]. International Journal of Hydrogen Energy, 2016, 41(33): 14795-14806. |
57 | VAJO J J, MERTENS F, AHN C C, et al. Altering hydrogen storage properties by hydride destabilization through alloy formation: LiH and MgH2 destabilized with Si[J]. The Journal of Physical Chemistry B, 2004, 108(37): 13977-13983. |
58 | ZHONG H C, WANG H, LIU J W, et al. Altered desorption enthalpy of MgH2 by the reversible formation of Mg(In) solid solution[J]. Scripta Materialia, 2011, 65(4): 285-287. |
59 | OUYANG L Z, QIN F X, ZHU M. The hydrogen storage behavior of Mg3La and Mg3LaNi0.1[J]. Scripta Materialia, 2006, 55(12): 1075-1078. |
60 | WANG Y Q, LÜ S X, ZHOU Z Y, et al. Effect of transition metal on the hydrogen storage properties of Mg-Al alloy[J]. Journal of Materials Science, 2017, 52(5): 2392-2399. |
61 | WEI X, ZHANG W, SUN H F, et al. Investigation on the gaseous hydrogen storage properties of as-cast Mg95- xAl5Yx (x=0-5) alloys[J]. International Journal of Hydrogen Energy, 2022, 47(25): 12653-12664. |
62 | OUYANG L Z, WANG H, CHUNG C Y, et al. MgNi/Pd multilayer hydrogen storage thin films prepared by dc magnetron sputtering[J]. Journal of Alloys and Compounds, 2006, 422(1/2): 58-61. |
63 | YU Y C, JI Y Q, ZHANG S H, et al. Microstructure characteristics, hydrogen storage thermodynamic and kinetic properties of Mg-Ni-Y based hydrogen storage alloys[J]. International Journal of Hydrogen Energy, 2022, 47(63): 27059-27070. |
64 | XIE X B, HOU C X, CHEN C G, et al. First-principles studies in Mg-based hydrogen storage Materials: A review[J]. Energy, 2020, 211: 118959. |
65 | GUO F H, ZHANG T B, SHI L M, et al. Hydrogen absorption/desorption cycling performance of Mg-based alloys with in situ formed Mg2Ni and LaHx (x=2, 3) nanocrystallines[J]. Journal of Magnesium and Alloys, 2023, 11(4): 1180-1192. |
66 | BU W G, LIU Q H, PENG W L, et al. Hydrogen storage characteristics, kinetics and thermodynamics of Gd-Mg-Ni-based alloys[J]. International Journal of Hydrogen Energy, 2023, 48(19): 7048-7057. |
67 | SONG F, YAO J W, YONG H, et al. Investigation of ball-milling process on microstructure, thermodynamics and kinetics of Ce-Mg-Ni-based hydrogen storage alloy[J]. International Journal of Hydrogen Energy, 2023, 48(30): 11274-11286. |
68 | DING X, CHEN R R, ZHANG J X, et al. Achieving superior hydrogen storage properties via in-situ formed nanostructures: A high-capacity Mg-Ni alloy with La microalloying[J]. International Journal of Hydrogen Energy, 2022, 47(10): 6755-6766. |
69 | YONG H, GUO S H, YUAN Z M, et al. Phase evolution, hydrogen storage thermodynamics and kinetics of ternary Mg90Ce5Sm5 alloy[J]. Journal of Rare Earths, 2020, 38(6): 633-641. |
70 | ZHANG J X, DING X, CHEN R R, et al. Comparative study of solid-solution treatment and hot-extrusion on hydrogen storage performance for Mg96Y2Zn2 alloy: The nonnegligible role of elements distribution[J]. Journal of Power Sources, 2022, 548: 232037. |
71 | ZHANG Y H, ZHANG W, GAO J L, et al. Improved hydrogen storage kinetics of Mg-based alloys by substituting La with Sm[J]. International Journal of Hydrogen Energy, 2020, 45(41): 21588-21599. |
72 | ZHANG Y H, WEI X, YUAN Z M, et al. Hydrogen storage thermodynamics and dynamics of Mg-Y-Ni-Cu based alloys synthesized by melt spinning[J]. Journal of Physics and Chemistry of Solids, 2020, 138: 109252. |
73 | CERMAK J, KRAL L, ROUPCOVA P. A new light-element multi-principal-elements alloy AlMg2TiZn and its potential for hydrogen storage[J]. Renewable Energy, 2022, 198: 1186-1192. |
74 | YEH J W, CHEN S K, LIN S J, et al. Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes[J]. Advanced Engineering Materials, 2004, 6(5): 299-303. |
75 | 申炳泽, 樊建锋, 郭卉君. 含镁高熵合金MgxTiVNiAlCr储氢性能的研究[J]. 铸造技术, 2021, 42(7): 565-569. |
SHEN B Z, FAN J F, GUO H J. Study on Hydrogen Storage Properties of High Entropy Alloy MgxTiVNiAlCr [J]. Casting technology, 2021, 42 (7) : 565-569. | |
76 | MONTERO J, EK G, SAHLBERG M, et al. Improving the hydrogen cycling properties by Mg addition in Ti-V-Zr-Nb refractory high entropy alloy[J]. Scripta Materialia, 2021, 194: 113699. |
77 | KIM K C, DAI B, KARL JOHNSON J, et al. Assessing nanoparticle size effects on metal hydride thermodynamics using the Wulff construction[J]. Nanotechnology, 2009, 20(20): 204001. |
78 | VAJEESTON P, RAVINDRAN P, FICHTNER M, et al. Influence of crystal structure of bulk phase on the stability of nanoscale phases: Investigation on MgH2 derived nanostructures[J]. The Journal of Physical Chemistry C, 2012, 116(35): 18965-18972. |
79 | VAJEESTON P, SARTORI S, RAVINDRAN P, et al. MgH2 in carbon scaffolds: A combined experimental and theoretical investigation[J]. The Journal of Physical Chemistry C, 2012, 116(40): 21139-21147. |
80 | HOUSE S D, VAJO J J, REN C, et al. Effect of ball-milling duration and dehydrogenation on the morphology, microstructure and catalyst dispersion in Ni-catalyzed MgH2 hydrogen storage materials[J]. Acta Materialia, 2015, 86: 55-68. |
81 | BOLARIN J A, ZOU R, LI Z, et al. Recent path to ultrafine Mg/MgH2 synthesis for sustainable hydrogen storage[J]. International Journal of Hydrogen Energy, 2024, 52: 251-274. |
82 | CHEN M, HU M M, XIE X B, et al. High loading nanoconfinement of V-decorated Mg with 1 nm carbon shells: Hydrogen storage properties and catalytic mechanism[J]. Nanoscale, 2019, 11(20): 10045-10055. |
83 | ZHANG P, XIONG J, QIAO N Q, et al. Spatiotemporal distribution of protists in the Yarlung Zangbo River, Tibetan Plateau[J]. Water Biology and Security, 2022, 1(4): 100064. |
84 | SCHULZ R, HUOT J, LIANG G, et al. Recent developments in the applications of nanocrystalline materials to hydrogen technologies[J]. Materials Science and Engineering: A, 1999, 267(2): 240-245. |
85 | VARIN R A, CZUJKO T, WRONSKI Z. Particle size, grain size and γ-MgH2 effects on the desorption properties of nanocrystalline commercial magnesium hydride processed by controlled mechanical milling[J]. Nanotechnology, 2006, 17(15): 3856-3865. |
86 | OUYANG L Z, CAO Z J, WANG H, et al. Application of dielectric barrier discharge plasma-assisted milling in energy storage materials–A review[J]. Journal of Alloys and Compounds, 2017, 691: 422-435. |
87 | DAN L, WANG H, LIU J W, et al. H2 plasma reducing Ni nanoparticles for superior catalysis on hydrogen sorption of MgH2[J]. ACS Applied Energy Materials, 2022, 5(4): 4976-4984. |
88 | LIU X F, ZHU Y F, LI L Q. Hydriding and dehydriding properties of nanostructured Mg2Ni alloy prepared by the process of hydriding combustion synthesis and subsequent mechanical grinding[J]. Journal of Alloys and Compounds, 2006, 425(1/2): 235-238. |
89 | FU Y K, DING Z M, ZHANG L, et al. Catalytic effect of a novel MgC0.5Co3 compound on the dehydrogenation of MgH2[J]. Progress in Natural Science: Materials International, 2021, 31(2): 264-269. |
90 | RIEKE R D, HUDNALL P M. Activated metals. I. Preparation of highly reactive magnesium metal[J]. Journal of the American Chemical Society, 1972, 94(20): 7178-7179. |
91 | SUN Y H, AGUEY-ZINSOU K F. Synthesis of magnesium nanofibers by electroless reduction and their hydrogen interaction properties[J]. Particle & Particle Systems Characterization, 2017, 34(4): 1600276-1600284. |
92 | LIU W, AGUEY-ZINSOU K F. Size effects and hydrogen storage properties of Mg nanoparticles synthesised by an electroless reduction method[J]. Journal of Materials Chemistry A, 2014, 2(25): 9718-9726. |
93 | RIEKE R D, LI P T J, BURNS T P, et al. Preparation of highly reactive metal powders. New procedure for the preparation of highly reactive zinc and magnesium metal powders[J]. The Journal of Organic Chemistry, 1981, 46(21): 4323-4324. |
94 | SHEN C Q, AGUEY-ZINSOU K F. Can γ-MgH2 improve the hydrogen storage properties of magnesium?[J]. Journal of Materials Chemistry A, 2017, 5(18): 8644-8652. |
95 | JEON K J, MOON H R, RUMINSKI A M, et al. Air-stable magnesium nanocomposites provide rapid and high-capacity hydrogen storage without using heavy-metal catalysts[J]. Nature Materials, 2011, 10: 286-290. |
96 | FRANCOIS A Z K, RAMÓN A F J. Synthesis of colloidal magnesium: A near room temperature store for hydrogen[J]. Chemistry of Materials, 2008, 20(2): 376-378. |
97 | NORBERG N S, ARTHUR T S, FREDRICK S J, et al. Size-dependent hydrogen storage properties of Mg nanocrystals prepared from solution[J]. Journal of the American Chemical Society, 2011, 133(28): 10679-10681. |
98 | MATSUMOTO I, AKIYAMA T, NAKAMURA Y, et al. Controlled shape of magnesium hydride synthesized by chemical vapor deposition[J]. Journal of Alloys and Compounds, 2010, 507(2): 502-507. |
99 | LI W Y, LI C S, MA H, et al. Magnesium nanowires: Enhanced kinetics for hydrogen absorption and desorption[J]. Journal of the American Chemical Society, 2007, 129(21): 6710-6711. |
100 | LU C, MA Y L, LI F, et al. Visualization of fast "hydrogen pump" in core-shell nanostructured Mg@Pt through hydrogen-stabilized Mg3Pt[J]. Journal of Materials Chemistry A, 2019, 7(24): 14629-14637. |
101 | GREMAUD R, BROEDERSZ C P, BORSA D M, et al. Hydrogenography: An optical combinatorial method to find new light-weight hydrogen-storage materials[J]. Advanced Materials, 2007, 19(19): 2813-2817. |
102 | HIGUCHI K, YAMAMOTO K, KAJIOKA H, et al. Remarkable hydrogen storage properties in three-layered Pd/Mg/Pd thin films[J]. Journal of Alloys and Compounds, 2002, 330/331/332: 526-530. |
103 | ZHU C X, CHEN M, HU M M, et al. Hydrogen storage properties of Mg-Nb@C nanocomposite: Effects of Nb nanocatalyst and carbon nanoconfinement[J]. International Journal of Hydrogen Energy, 2021, 46(14): 9443-9451. |
104 | LIU M J, ZHAO S C, XIAO X Z, et al. Novel 1D carbon nanotubes uniformly wrapped nanoscale MgH2 for efficient hydrogen storage cycling performances with extreme high gravimetric and volumetric capacities[J]. Nano Energy, 2019, 61: 540-549. |
105 | XIA G L, TAN Y B, CHEN X W, et al. Monodisperse magnesium hydride nanoparticles uniformly self-assembled on graphene[J]. Advanced Materials, 2015, 27(39): 5981-5988. |
106 | RUMINSKI A M, BARDHAN R, BRAND A, et al. Synergistic enhancement of hydrogen storage and air stability via Mg nanocrystal-polymer interfacial interactions[J]. Energy & Environmental Science, 2013, 6(11): 3267-3271. |
107 | LIM D W, YOON J W, RYU K Y, et al. Magnesium nanocrystals embedded in a metal-organic framework: Hybrid hydrogen storage with synergistic effect on physi-and chemisorption[J]. Angewandte Chemie, 2012, 51(39): 9814-9817. |
108 | MA Z W, ZHANG Q Y, PANDA S, et al. In situ catalyzed and nanoconfined magnesium hydride nanocrystals in a Ni-MOF scaffold for hydrogen storage[J]. Sustainable Energy & Fuels, 2020, 4(9): 4694-4703. |
109 | MA Z W, PANDA S, ZHANG Q Y, et al. Improving hydrogen sorption performances of MgH2 through nanoconfinement in a mesoporous CoS nano-boxes scaffold[J]. Chemical Engineering Journal, 2021, 406: 126790. |
110 | WEBB C J. A review of catalyst-enhanced magnesium hydride as a hydrogen storage material[J]. Journal of Physics and Chemistry of Solids, 2015, 84: 96-106. |
111 | YANG X L, ZHANG J Q, HOU Q H, et al. Improvement of Mg-based hydrogen storage materials by metal catalysts: Review and summary[J]. ChemistrySelect, 2021, 6(33): 8809-8829. |
112 | LIANG G, HUOT J, BOILY S, et al. Catalytic effect of transition metals on hydrogen sorption in nanocrystalline ball milled MgH2–Tm (Tm=Ti, V, Mn, Fe and Ni) systems[J]. Journal of Alloys and Compounds, 1999, 292(1/2): 247-252. |
113 | PUKAZHSELVAN D, SANDHYA K S, RAMASAMY D, et al. Transformation of metallic Ti to TiH2 phase in the Ti/MgH2 composite and its influence on the hydrogen storage behavior of MgH2[J]. Chemphyschem: a European Journal of Chemical Physics and Physical Chemistry, 2020, 21(11): 1195-1201. |
114 | CHOI Y J, CHOI J W, SOHN H Y, et al. Chemical vapor synthesis of Mg-Ti nanopowder mixture as a hydrogen storage material[J]. International Journal of Hydrogen Energy, 2009, 34(18): 7700-7706. |
115 | HANADA N, ICHIKAWA T, FUJII H. Catalytic effect of Ni nano-particle and Nb oxide on H-desorption properties in MgH2 prepared by ball milling[J]. Journal of Alloys and Compounds, 2005, 404/405/406: 716-719. |
116 | XIE L, LIU Y, ZHANG X Z, et al. Catalytic effect of Ni nanoparticles on the desorption kinetics of MgH2 nanoparticles[J]. Journal of Alloys and Compounds, 2009, 482(1/2): 388-392. |
117 | YANG W N, SHANG C X, GUO Z X. Site density effect of Ni particles on hydrogen desorption of MgH2[J]. International Journal of Hydrogen Energy, 2010, 35(10): 4534-4542. |
118 | BASSETTI A, BONETTI E, PASQUINI L, et al. Hydrogen desorption from ball milled MgH2 catalyzed with Fe[J]. The European Physical Journal B-Condensed Matter and Complex Systems, 2005, 43(1): 19-27. |
119 | CHEN H P, MA N N, LI J Q, et al. Effect of atomic iron on hydriding reaction of magnesium: Atomic-substitution and atomic-adsorption cases from a density functional theory study[J]. Applied Surface Science, 2020, 504: 144489. |
120 | ANTIQUEIRA F J, LEIVA D R, ZEPON G, et al. Fast hydrogen absorption/desorption kinetics in reactive milled Mg-8 mol% Fe nanocomposites[J]. International Journal of Hydrogen Energy, 2020, 45(22): 12408-12418. |
121 | ZHANG L T, JI L, YAO Z D, et al. Facile synthesized Fe nanosheets as superior active catalyst for hydrogen storage in MgH2[J]. International Journal of Hydrogen Energy, 2019, 44(39): 21955-21964. |
122 | ZHANG J, YAN S, QU H. Recent progress in magnesium hydride modified through catalysis and nanoconfinement[J]. International Journal of Hydrogen Energy, 2018, 43(3): 1545-1565. |
123 | BARKHORDARIAN G, KLASSEN T, BORMANN R. Effect of Nb2O5 content on hydrogen reaction kinetics of Mg[J]. Journal of Alloys and Compounds, 2004, 364(1/2): 242-246. |
124 | TERZIEVA M, KHRUSSANOVA M, PESHEV P. Dehydriding kinetics of mechanically alloyed mixtures of magnesium with some 3d transition metal oxides[J]. International Journal of Hydrogen Energy, 1991, 16(4): 265-270. |
125 | OELERICH W, KLASSEN T, BORMANN R. Metal oxides as catalysts for improved hydrogen sorption in nanocrystalline Mg-based materials[J]. Journal of Alloys and Compounds, 2001, 315(1/2): 237-242. |
126 | CHEN M, XIAO X Z, ZHANG M, et al. Insights into 2D graphene-like TiO2 (B) nanosheets as highly efficient catalyst for improved low-temperature hydrogen storage properties of MgH2[J]. Materials Today Energy, 2020, 16: 100411. |
127 | REN L, ZHU W, LI Y H, et al. Oxygen vacancy-rich 2D TiO2 nanosheets: A bridge toward high stability and rapid hydrogen storage kinetics of nano-confined MgH2[J]. Nano-Micro Letters, 2022, 14(1): 144. |
128 | LIU Z B, LIU J C, WU Z H, et al. Enhanced hydrogen sorption kinetics of MgH2 catalyzed by a novel layered Ni/Al2O3 hybrid[J]. Journal of Alloys and Compounds, 2022, 895: 162682. |
129 | LIU Y F, ZHONG K, LUO K, et al. Size-dependent kinetic enhancement in hydrogen absorption and desorption of the Li-Mg-N-H system[J]. Journal of the American Chemical Society, 2009, 131(5): 1862-1870. |
130 | HUANG H X, YUAN J G, ZHANG B, et al. A noteworthy synergistic catalysis on hydrogen sorption kinetics of MgH2 with bimetallic oxide Sc2O3/TiO2[J]. Journal of Alloys and Compounds, 2020, 839: 155387. |
131 | SAZELEE N A, IDRIS N H, MD DIN M F, et al. Synthesis of BaFe12O19 by solid state method and its effect on hydrogen storage properties of MgH2[J]. International Journal of Hydrogen Energy, 2018, 43(45): 20853-20860. |
132 | ZHANG Y, WU F Y, GUEMOU S, et al. Constructing Mg2Co-Mg2CoH5 nano hydrogen pumps from LiCoO2 nanosheets for boosting the hydrogen storage property of MgH2[J]. Dalton Transactions, 2022, 51(42): 16195-16205. |
133 | ZHOU S M, WEI D, WAN H Y, et al. Efficient catalytic effect of the page-like MnCo2O4.5 catalyst on the hydrogen storage performance of MgH2[J]. Inorganic Chemistry Frontiers, 2022, 9(21): 5495-5506. |
134 | XU G, SHEN N, CHEN L J, et al. Effect of BiVO4 additive on the hydrogen storage properties of MgH2[J]. Materials Research Bulletin, 2017, 89: 197-203. |
135 | XIAN K C, WU M H, GAO M X, et al. A unique nanoflake-shape bimetallic Ti-Nb oxide of superior catalytic effect for hydrogen storage of MgH2[J]. Small, 2022, 18(43): e2107013. |
136 | FU H F, HU J, LU Y F, et al. Synergistic effect of a facilely synthesized MnV2O6 catalyst on improving the low-temperature kinetic properties of MgH2[J]. ACS Applied Materials & Interfaces, 2022, 14(29): 33161-33172. |
137 | HUANG X, XIAO X Z, WANG X C, et al. Synergistic catalytic activity of porous rod-like TMTiO3 (TM = Ni and co) for reversible hydrogen storage of magnesium hydride[J]. The Journal of Physical Chemistry C, 2018, 122(49): 27973-27982. |
138 | ZHANG X, SHEN Z Y, JIAN N, et al. A novel complex oxide TiVO3.5 as a highly active catalytic precursor for improving the hydrogen storage properties of MgH2[J]. International Journal of Hydrogen Energy, 2018, 43(52): 23327-23335. |
139 | LIANG H R, XIE Z Z, ZHAO R L, et al. Facile synthesis of nickel-vanadium bimetallic oxide and its catalytic effects on the hydrogen storage properties of magnesium hydride[J]. International Journal of Hydrogen Energy, 2022, 47(77): 32969-32980. |
140 | YANG X, WAN H Y, ZHOU S M, et al. Synergistic enhancement of hydrogen storage properties in MgH2 using LiNbO3 catalyst[J]. International Journal of Hydrogen Energy, 2023, 48(71): 27726-27736. |
141 | RATHI B, AGARWAL S, SHRIVASTAVA K, et al. An insight into the catalytic mechanism of perovskite ternary oxide for enhancing the hydrogen sorption kinetics of MgH2[J]. Journal of Alloys and Compounds, 2024, 970: 172616. |
142 | LIN H J, MATSUDA J, LI H W, et al. Enhanced hydrogen desorption property of MgH2 with the addition of cerium fluorides[J]. Journal of Alloys and Compounds, 2015, 645: S392-S396. |
143 | MAO J F, ZOU J X, LU C, et al. Hydrogen storage and hydrolysis properties of core-shell structured Mg-MFx(M=V, Ni, La and Ce) nano-composites prepared by arc plasma method[J]. Journal of Power Sources, 2017, 366: 131-142. |
144 | SULAIMAN N N, JUAHIR N, MUSTAFA N S, et al. Improved hydrogen storage properties of MgH2 catalyzed with K2NiF6[J]. Journal of Energy Chemistry, 2016, 25(5): 832-839. |
145 | YAN C G, LU X, ZHENG J G, et al. Dual-cation K2TaF7 catalyst improves high-capacity hydrogen storage behavior of MgH2[J]. International Journal of Hydrogen Energy, 2023, 48(15): 6023-6033. |
146 | WANG P, TIAN Z H, WANG Z X, et al. Improved hydrogen storage properties of MgH2 using transition metal sulfides as catalyst[J]. International Journal of Hydrogen Energy, 2021, 46(53): 27107-27118. |
147 | FU Y K, ZHANG L, LI Y, et al. Effect of ternary transition metal sulfide FeNi2S4 on hydrogen storage performance of MgH2[J]. Journal of Magnesium and Alloys, 2023, 11(8): 2927-2938. |
148 | CHEN Z J, KIRLIKOVALI K O, IDREES K B, et al. Porous materials for hydrogen storage[J]. Chem, 2022, 8(3): 693-716. |
149 | HE H B, LI R, YANG Z H, et al. Preparation of MOFs and MOFs derived materials and their catalytic application in air pollution: A review[J]. Catalysis Today, 2021, 375: 10-29. |
150 | REGO R M, KURIYA G, KURKURI M D, et al. MOF based engineered materials in water remediation: Recent trends[J]. Journal of Hazardous Materials, 2021, 403: 123605. |
151 | ZHOU H, HAN J J, CUAN J, et al. Responsive luminescent MOF materials for advanced anticounterfeiting[J]. Chemical Engineering Journal, 2022, 431: 134170. |
152 | ROWSELL J L C, MILLWARD A R, PARK K S, et al. Hydrogen sorption in functionalized metal-organic frameworks[J]. Journal of the American Chemical Society, 2004, 126(18): 5666-5667. |
153 | LIU M J, XIAO X Z, ZHAO S C, et al. ZIF-67 derived Co@CNTs nanoparticles: Remarkably improved hydrogen storage properties of MgH2 and synergetic catalysis mechanism[J]. International Journal of Hydrogen Energy, 2019, 44(2): 1059-1069. |
154 | WANG Y Q, LAN Z Q, HUANG X, et al. Study on catalytic effect and mechanism of MOF (MOF=ZIF-8, ZIF-67, MOF-74) on hydrogen storage properties of magnesium[J]. International Journal of Hydrogen Energy, 2019, 44(54): 28863-28873. |
155 | GAO H G, SHI R, SHAO Y T, et al. Catalysis derived from flower-like Ni MOF towards the hydrogen storage performance of magnesium hydride[J]. International Journal of Hydrogen Energy, 2022, 47(15): 9346-9356. |
156 | WANG Y Q, LAN Z Q, FU H, et al. Synergistic catalytic effects of ZIF-67 and transition metals (Ni, Cu, Pd, and Nb) on hydrogen storage properties of magnesium[J]. International Journal of Hydrogen Energy, 2020, 45(24): 13376-13386. |
157 | ZHANG L T, NYAHUMA F M, ZHANG H Y, et al. Metal organic framework supported niobium pentoxide nanoparticles with exceptional catalytic effect on hydrogen storage behavior of MgH2[J]. Green Energy & Environment, 2023, 8(2): 589-600. |
158 | XU W C, TAKAHASHI K, MATSUO Y, et al. Investigation of hydrogen storage capacity of various carbon materials[J]. International Journal of Hydrogen Energy, 2007, 32(13): 2504-2512. |
159 | ROSTAMI S, POUR A N, IZADYAR M. A review on modified carbon materials as promising agents for hydrogen storage[J]. Science Progress, 2018, 101(2): 171-191. |
160 | IIJIMA S. Helical microtubules of graphitic carbon[J]. Nature, 1991, 354: 56-58. |
161 | KAJIURA H, TSUTSUI S, KADONO K, et al. Hydrogen storage capacity of commercially available carbon materials at room temperature[J]. Applied Physics Letters, 2003, 82(7): 1105-1107. |
162 | RITSCHEL M, UHLEMANN M, GUTFLEISCH O, et al. Hydrogen storage in different carbon nanostructures[J]. Applied Physics Letters, 2002, 80(16): 2985. |
163 | MOSQUERA-VARGAS E, TAMAYO R, MOREL M, et al. Hydrogen storage in purified multi-walled carbon nanotubes: Gas hydrogenation cycles effect on the adsorption kinetics and their performance[J]. Heliyon, 2021, 7(12): e08494. |
164 | LIU M J, XIAO X Z, ZHAO S C, et al. Facile synthesis of Co/Pd supported by few-walled carbon nanotubes as an efficient bidirectional catalyst for improving the low temperature hydrogen storage properties of magnesium hydride[J]. Journal of Materials Chemistry A, 2019, 7(10): 5277-5287. |
165 | ZHANG B, XIE X B, WANG Y K, et al. In situ formation of multiple catalysts for enhancing the hydrogen storage of MgH2 by adding porous Ni3ZnC0.7/Ni loaded carbon nanotubes microspheres[J]. Journal of Magnesium and Alloys, 2022 |
166 | ZHANG J, YU X F, MAO C, et al. Influences and mechanisms of graphene-doping on dehydrogenation properties of MgH2: Experimental and first-principles studies[J]. Energy, 2015, 89: 957-964. |
167 | ZHOU D M, CUI K X, ZHOU Z W, et al. Enhanced hydrogen-storage properties of MgH2 by Fe–Ni catalyst modified three-dimensional graphene[J]. International Journal of Hydrogen Energy, 2021, 46(69): 34369-34380. |
168 | AMIRI A, CHEN Y J, BEE TENG C, et al. Porous nitrogen-doped MXene-based electrodes for capacitive deionization[J]. Energy Storage Materials, 2020, 25: 731-739. |
169 | WU Z T, SHANG T X, DENG Y Q, et al. The assembly of MXenes from 2D to 3D[J]. Advanced Science, 2020, 7(7): 1903077. |
170 | BORYSIUK V N, MOCHALIN V N, GOGOTSI Y. Molecular dynamic study of the mechanical properties of two-dimensional titanium carbides Tin+1Cn (MXenes)[J]. Nanotechnology, 2015, 26(26): 265705. |
171 | NAGUIB M, KURTOGLU M, PRESSER V, et al. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2[J]. Advanced Materials, 2011, 23(37): 4248-4253. |
172 | TONTINI G, GREAVES M, GHOSH S, et al. MXene-based 3D porous macrostructures for electrochemical energy storage[J]. Journal of Physics: Materials, 2020, 3(2): 022001. |
173 | ZHU W, REN L, LU C, et al. Nanoconfined and in situ catalyzed MgH2 self-assembled on 3D Ti3C2 MXene folded nanosheets with enhanced hydrogen sorption performances[J]. ACS Nano, 2021, 15(11): 18494-18504. |
174 | LIU H Z, LU C L, WANG X C, et al. Combinations of V2C and Ti3C2 MXenes for boosting the hydrogen storage performances of MgH2[J]. ACS Applied Materials & Interfaces, 2021, 13(11): 13235-13247. |
175 | ZHAO Y Y, ZHU Y F, LIU J C, et al. Enhancing hydrogen storage properties of MgH2 by core-shell CoNi@C[J]. Journal of Alloys and Compounds, 2021, 862: 158004. |
176 | WU Z J, FANG J H, LIU N, et al. The improvement in hydrogen storage performance of MgH2 enabled by multilayer Ti3C2[J]. Micromachines, 2021, 12(10): 1190. |
177 | WANG Z Y, ZHANG X L, REN Z H, et al. In situ formed ultrafine NbTi nanocrystals from a NbTiC solid-solution MXene for hydrogen storage in MgH2[J]. Journal of Materials Chemistry A, 2019, 7(23): 14244-14252. |
178 | WANG Y H, FAN G X, ZHANG D F, et al. Striking enhanced effect of PrF3 particles on Ti3C2 MXene for hydrogen storage properties of MgH2[J]. Journal of Alloys and Compounds, 2022, 914: 165291. |
179 | LU C L, LIU H Z, XU L, et al. Two-dimensional vanadium carbide for simultaneously tailoring the hydrogen sorption thermodynamics and kinetics of magnesium hydride[J]. Journal of Magnesium and Alloys, 2022, 10(4): 1051-1065. |
180 | WAN H Y, YANG X, ZHOU S M, et al. Enhancing hydrogen storage properties of MgH2 using FeCoNiCrMn high entropy alloy catalysts[J]. Journal of Materials Science & Technology, 2023, 149: 88-98. |
181 | ZHANG J X, LIU H, ZHOU C S, et al. TiVNb-based high entropy alloys as catalysts for enhanced hydrogen storage in nanostructured MgH2[J]. Journal of Materials Chemistry A, 2023, 11(9): 4789-4800. |
182 | VERMA S K, MISHRA S S, MUKHOPADHYAY N K, et al. Superior catalytic action of high-entropy alloy on hydrogen sorption properties of MgH2[J]. International Journal of Hydrogen Energy, 2024, 50: 749-762. |
[1] | 黄祥龙, 李怡, 徐茂文. 室温钠硫电池硫正极催化剂的研究进展[J]. 储能科学与技术, 2024, 13(1): 231-239. |
[2] | 杨基鹏, 叶强. 基于Bi3+ 过膜缓释策略的在线铋沉积对铁铬液流电池性能的影响[J]. 储能科学与技术, 2023, 12(4): 1075-1082. |
[3] | 贡淑雅, 王跃, 李萌, 邱景义, 王洪, 文越华, 徐斌. 锂离子电池负极材料TiNb2O7 的研究进展[J]. 储能科学与技术, 2022, 11(9): 2921-2932. |
[4] | 谢程露, 黄贤坤, 康丽霞, 刘永忠. 胶体溶液制备碳纳米管负载钌纳米颗粒的电催化合成氨性能[J]. 储能科学与技术, 2022, 11(6): 1947-1956. |
[5] | 王培灿, 万磊, 徐子昂, 许琴, 庞茂斌, 陈金勋, 王保国. 基于界面工程的自支撑催化电极用于电解水制氢[J]. 储能科学与技术, 2022, 11(6): 1934-1946. |
[6] | 王为术, 张向薪, 姚紫琨, 甄娟. MgH2 反应器储氢反应速度特性[J]. 储能科学与技术, 2022, 11(5): 1543-1550. |
[7] | 陈健鑫, 盛楠, 朱春宇, 饶中浩. 生物质碳负载镍基纳米颗粒及其电解水析氢性能[J]. 储能科学与技术, 2022, 11(5): 1350-1357. |
[8] | 胡冶州, 王双, 申涛, 朱叶, 王得丽. 限域型贵金属氧还原反应电催化剂研究进展[J]. 储能科学与技术, 2022, 11(4): 1264-1277. |
[9] | 贾林辉, 盖泽嘉, 李沫汐, 梁华根. MOFs及其衍生物在锂-氧气电池正极中的研究进展[J]. 储能科学与技术, 2022, 11(2): 503-510. |
[10] | 蔡佳琳, 陈艺哲, 容忠言, 张久俊, 张世明. 微波合成碳载铂用于氧还原电催化[J]. 储能科学与技术, 2022, 11(12): 3800-3807. |
[11] | 丁显, 冯涛, 何广利, 胡婷, 刘延江. 风电光伏波动性电源对电解水制氢电解槽影响的研究进展[J]. 储能科学与技术, 2022, 11(10): 3275-3284. |
[12] | 李月霞, 刘全兵. MXene基纳米材料在氧还原电催化中的应用[J]. 储能科学与技术, 2021, 10(6): 1918-1930. |
[13] | 何峰, 张静静, 陈奕君, 张建, 王得丽. 电化学氧还原反应合成H2O2碳基催化剂研究进展[J]. 储能科学与技术, 2021, 10(6): 1963-1976. |
[14] | 张申智, 王立开, 孙迎港, 吕恒, 杨子寅, 李磊磊, 李忠芳. 二维碳载Au4Pd2催化剂的构建及其电催化性能[J]. 储能科学与技术, 2021, 10(6): 2028-2038. |
[15] | 张博雅, 刘柏鸿, 黎远航, 刘欣, 陈乾风, 侯三英. 二元氧化物修饰催化剂的制备及其自增湿性能[J]. 储能科学与技术, 2021, 10(6): 2013-2019. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||