储能科学与技术 ›› 2024, Vol. 13 ›› Issue (3): 825-840.doi: 10.19799/j.cnki.2095-4239.2023.0751

• 储能材料与器件 • 上一篇    下一篇

提高硬碳材料钠离子电池首次库仑效率的研究进展

江成凡(), 黄俊(), 谢海波   

  1. 贵州大学,贵州 贵阳 550025
  • 收稿日期:2023-10-24 修回日期:2023-12-08 出版日期:2024-03-28 发布日期:2024-03-28
  • 通讯作者: 黄俊 E-mail:jiangcf9872@163.com;huangj@gzu.edu.cn
  • 作者简介:江成凡(1998—),男,硕士研究生,研究方向为钠离子电池硬碳负极材料,E-mail:jiangcf9872@163.com

Improving the initial coulombic efficiency of hard carbon materials for sodium-ion batteries

Chengfan JIANG(), Jun HUANG(), Haibo XIE   

  1. Guizhou University, Guiyang 550025, Guizhou, China
  • Received:2023-10-24 Revised:2023-12-08 Online:2024-03-28 Published:2024-03-28
  • Contact: Jun HUANG E-mail:jiangcf9872@163.com;huangj@gzu.edu.cn

摘要:

钠离子电池(SIBs),得益于钠资源的高丰度、分布均匀、较低的成本、优异的低温性能和快充特性等优势,被认为是潜力巨大的大规模储能技术。SIBs的电化学性能很大程度上由电极材料决定,在负极材料中,硬碳(HC)材料由于具有较低的氧化/还原电势、合适的比容量、对环境友好、制造方法简单以及来源广泛等优势,被认为是目前最为理想的SIBs负极材料。然而,HC作为负极材料的SIBs首次库仑效率(ICE)的不足导致在全电池中阴极的钠被过度消耗,因而严重限制了HC在SIBs的实际应用。因此,结合导致硬碳材料ICE较低的关键科学问题,本文总结、分析了提高SIBs硬碳负极材料ICE的研究进展,包括调节热解温度、减少缺陷、孔隙调控以及金属原子催化调控碳层这4种方式。并简要介绍了硬碳材料的碳层间距、缺陷以及孔隙这3个基本结构,以及不同的结构影响钠离子储存行为的最新研究进展,论述了不同类型HC负极材料的设计思路及其商业化进展,最后分析探讨了SIBs硬碳负极材料的发展方向。

关键词: 钠离子电池, 首次库仑效率, 硬碳, 结构

Abstract:

Sodium-ion batteries (SIBs) are considered one of the most promising technologies for large-scale energy storage because of their high abundance, uniform distribution, low cost, excellent low-temperature performance, and fast charging characteristics. The electrode material substantially influences the electrochemical performance of SIBs. Among the negative electrode materials, hard carbon (HC) is deemed the most suitable for SIBs owing to its low oxidation/reduction potential, appropriate specific capacity, environmental friendliness, simple manufacturing methods, and versatile applications. However, the practical application of HC in SIBs is hindered by insufficient initial Coulombic efficiency (ICE), resulting in excessive sodium consumption in the cathode of the whole cell. This limitation prompts a detailed exploration of key scientific issues contributing to the low ICE of hard carbon. This study systematically summarizes and analyzes the recent research progress to enhance the ICE of hard carbon-negative electrode materials for SIBs. Four methods are discussed: adjusting pyrolysis temperature, reducing defects, controlling pore structures, and catalytic control of carbon structure by metal atoms. This study aims to briefly introduce the three fundamental structures of hard carbon materials, namely, carbon interlayer spacing, defects, and pores, alongside the latest research advancements concerning the influence of these structures on sodium ion storage behavior. Furthermore, different HC-negative electrode materials' design concepts and commercialization progress are explored. Finally, this study analyzes and explores the development direction for SIB hard carbon-negative electrode materials.

Key words: sodium-ion battery, initial coulombic efficiency, hard carbon, structure

中图分类号: