1 |
ZHANG Y, LI Y F. Prognostics and health management of Lithium-ion battery using deep learning methods: A review[J]. Renewable and Sustainable Energy Reviews, 2022, 161: 112282.
|
2 |
TIAN J Q, LIU X H, LI S Q, et al. Lithium-ion battery health estimation with real-world data for electric vehicles[J]. Energy, 2023, 270: 126855.
|
3 |
LIN M Q, WU D G, MENG J H, et al. Health prognosis for lithium-ion battery with multi-feature optimization[J]. Energy, 2023, 264: 126307.
|
4 |
SHAO J Y, LI J F, YUAN W Z, et al. A novel method of discharge capacity prediction based on simplified electrochemical model-aging mechanism for lithium-ion batteries[J]. Journal of Energy Storage, 2023, 61: 106788.
|
5 |
YANG L, CAI Y S, YANG Y X, et al. Supervisory long-term prediction of state of available power for lithium-ion batteries in electric vehicles[J]. Applied Energy, 2020, 257: 114006.
|
6 |
KIM S, PARK H J, CHOI J H, et al. A novel prognostics approach using shifting kernel particle filter of Li-ion batteries under state changes[J]. IEEE Transactions on Industrial Electronics, 2021, 68(4): 3485-3493.
|
7 |
ZHANG Y H, YANG Y, XIU X C, et al. A remaining useful life prediction method in the early stage of stochastic degradation process[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2021, 68(6): 2027-2031.
|
8 |
DONG G Z, HAN W J, WANG Y J. Dynamic Bayesian network-based lithium-ion battery health prognosis for electric vehicles[J]. IEEE Transactions on Industrial Electronics, 2021, 68(11): 10949-10958.
|
9 |
LIU K L, SHANG Y L, OUYANG Q, et al. A data-driven approach with uncertainty quantification for predicting future capacities and remaining useful life of lithium-ion battery[J]. IEEE Transactions on Industrial Electronics, 2021, 68(4): 3170-3180.
|
10 |
GOH H H, LAN Z T, ZHANG D D, et al. Estimation of the state of health (SOH) of batteries using discrete curvature feature extraction[J]. Journal of Energy Storage, 2022, 50: 104646.
|
11 |
XING L K, LIU X, LUO W F, et al. State of health estimation for lithium-ion batteries using IAO–SVR[J]. World Electric Vehicle Journal, 2023, 14(5): 122.
|
12 |
WANG S L, FERNANDEZ C, YU C M, et al. A novel charged state prediction method of the lithium ion battery packs based on the composite equivalent modeling and improved splice Kalman filtering algorithm[J]. Journal of Power Sources, 2020, 471: 228450.
|
13 |
CHEN Z, XUE Q, WU Y T, et al. Capacity prediction and validation of lithium-ion batteries based on long short-term memory recurrent neural network[J]. IEEE Access, 2020, 8: 172783-172798.
|
14 |
高德欣, 刘欣, 杨清. 基于卷积神经网络与双向长短时融合的锂离子电池剩余使用寿命预测[J]. 信息与控制, 2022, 51(3): 318-329, 360.
|
|
GAO D X, LIU X, YANG Q. Remaining useful life prediction of lithium-ion battery based on CNN and BiLSTM fusion[J]. Information and Control, 2022, 51(3): 318-329, 360.
|
15 |
陈锐, 丁凯, 祖连兴, 等. 基于AED-CEEMD-Transformer的锂离子电池健康状态估计[J]. 储能科学与技术, 2023, 12(10): 3242-3253.
|
|
CHEN R, DING K, ZU L X, et al. Prediction of state of health of lithium-ion batteries based on the AED-CEEMD-Transformer network[J]. Energy Storage Science and Technology, 2023, 12(10): 3242-3253.
|
16 |
LIN Z C, HU H P, LIU W, et al. State of health estimation of lithium-ion batteries based on remaining area capacity[J]. Journal of Energy Storage, 2023, 63: 107078.
|
17 |
KONG J Z, YANG F F, ZHANG X, et al. Voltage-temperature health feature extraction to improve prognostics and health management of lithium-ion batteries[J]. Energy, 2021, 223: 120114.
|
18 |
JIA J F, LIANG J Y, SHI Y H, et al. SOH and RUL prediction of lithium-ion batteries based on Gaussian process regression with indirect health indicators[J]. Energies, 2020, 13(2): 375.
|
19 |
ROMAN D, SAXENA S, ROBU V, et al. Machine learning pipeline for battery state-of-health estimation[J]. Nature Machine Intelligence, 2021, 3: 447-456.
|
20 |
ZHU J G, WANG Y X, HUANG Y, et al. Data-driven capacity estimation of commercial lithium-ion batteries from voltage relaxation[J]. Nature Communications, 2022, 13: 2261.
|
21 |
WU C H, WU F Z, QI T, et al. Fastformer: Additive attention can be all you need[J]. ArXiv e-Prints, 2021: arXiv: .
|
22 |
SEVERSON K A, ATTIA P M, JIN N, et al. Data-driven prediction of battery cycle life before capacity degradation[J]. Nature Energy, 2019, 4: 383-391.
|
23 |
VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems. December 4 - 9, 2017, Long Beach, California, USA. ACM, 2017: 6000–6010.
|
24 |
徐建民, 郭紫芯, 肖涛, 等.基于正交试验的水平换热器充气模拟实验研究[J]. 化学工程与装备, 2023(9): 10-12, 16.
|
|
XU J M, GUO Z X,XIAO T, et al. Experimental study on air-simulated level heat exchanger based on orthogonal experiment[J]. Chemical Engineering and Equipment, 2023(9): 10-12, 16.
|