1 |
HU G F, HUANG P F, BAI Z H, et al. Comprehensively analysis the failure evolution and safety evaluation of automotive lithium ion battery[J]. eTransportation, 2021, 10: 100140.
|
2 |
王其钰, 王朔, 张杰男, 等. 锂离子电池失效分析概述[J]. 储能科学与技术, 2017, 6(5): 1008-1025.
|
|
WANG Q Y, WANG S, ZHANG J N, et al. Overview of the failure analysis of lithium ion batteries[J]. Energy Storage Science and Technology, 2017, 6(5): 1008-1025.
|
3 |
QIAN G N, MONACO F, MENG D C, et al. The role of structural defects in commercial lithium-ion batteries[J]. Cell Reports Physical Science, 2021, 2(9): 100554.
|
4 |
FENG X N, REN D S, HE X M, et al. Mitigating thermal runaway of lithium-ion batteries[J]. Joule, 2020, 4(4): 743-770.
|
5 |
XIONG R, MA S X, LI H L, et al. Toward a safer battery management system: A critical review on diagnosis and prognosis of battery short circuit[J]. iScience, 2020, 23(4): 101010.
|
6 |
WU Q, YANG L, LI N, et al. In-situ thermography revealing the evolution of internal short circuit of lithium-ion batteries[J]. Journal of Power Sources, 2022, 540: 231602.
|
7 |
YU Q Q, WANG C, LI J M, et al. Challenges and outlook for lithium-ion battery fault diagnosis methods from the laboratory to real world applications[J]. eTransportation, 2023, 17: 100254.
|
8 |
GRABOW J, KLINK J, BENGER R, et al. Particle contamination in commercial lithium-ion cells — Risk assessment with focus on internal short circuits and replication by currently discussed trigger methods[J]. Batteries, 2023, 9(1): 9.
|
9 |
NAKAJIMA H, INADA A, KITAHARA T, et al. Impedance spectra associated with metal deposition at the negative electrode from contaminating metal particles at the positive electrode in a lithium ion battery[J]. ECS Transactions, 2017, 75(23): 27-36.
|
10 |
NAKAJIMA H, KITAHARA T. Diagnosis method to detect the incorporation of metallic particles in a lithium ion battery[J]. ECS Transactions, 2015, 68(2): 59.
|
11 |
SUN Y K, YUAN Y B, LU L G, et al. A comprehensive research on internal short circuits caused by copper particle contaminants on cathode in lithium-ion batteries[J]. eTransportation, 2022, 13: 100183.
|
12 |
LIU L S, FENG X N, ZHANG M X, et al. Comparative study on substitute triggering approaches for internal short circuit in lithium-ion batteries[J]. Applied Energy, 2020, 259: 114143.
|
13 |
HOFFMANN L, KASPER M, KAHN M, et al. High-potential test for quality control of separator defects in battery cell production[J]. Batteries, 2021, 7(4): 64.
|
14 |
PAN Y, KONG X D, YUAN Y B, et al. Detecting the foreign matter defect in lithium-ion batteries based on battery pilot manufacturing line data analyses[J]. Energy, 2023, 262: 125502.
|
15 |
李纪伟, 刘睿涵, 吕桃林, 等. 基于局部离群点检测和标准差方法的锂离子电池组早期故障诊断[J]. 储能科学与技术, 2023, 12(9): 2917-2926.
|
|
LI J W, LIU R H, LV T L, et al. Early fault diagnosis of lithium-ion battery packs based on improved local outlier detection and standard deviation method[J]. Energy Storage Science and Technology, 2023, 12(9): 2917-2926.
|
16 |
ZHANG H K, KONG X D, YUAN Y B, et al. A K-value dynamic detection method based on machine learning for lithium-ion battery manufacturing[J]. Batteries, 2023, 9(7): 346.
|
17 |
MA S C, SUN B X, SU X J, et al. Sensitivity analysis of electrochemical model parameters for lithium-ion batteries on terminal voltages and anode lithium plating criterion[J]. Journal of Energy Storage, 2023, 71: 108127.
|
18 |
CANNARELLA J, ARNOLD C B. The effects of defects on localized plating in lithium-ion batteries[J]. Journal of the Electrochemical Society, 2015, 162(7): A1365-A1373.
|
19 |
MYUNG S T, SASAKI Y, SAKURADA S, et al. Electrochemical behavior of current collectors for lithium batteries in non-aqueous alkyl carbonate solution and surface analysis by ToF-SIMS[J]. Electrochimica Acta, 2009, 55(1): 288-297.
|