储能科学与技术 ›› 2024, Vol. 13 ›› Issue (7): 2181-2191.doi: 10.19799/j.cnki.2095-4239.2024.0369

• 低温电池专刊 • 上一篇    下一篇

兼顾高/低温环境性能的动力电池热管理系统设计

刘松燕1(), 王卫良1(), 彭世亮1, 吕俊复2   

  1. 1.暨南大学国际能源学院(能源电力研究中心),广东 珠海 519070
    2.清华大学热科学与动力 工程教育部重点实验室,北京 100084
  • 收稿日期:2024-04-28 修回日期:2024-06-06 出版日期:2024-07-28 发布日期:2024-07-23
  • 通讯作者: 王卫良 E-mail:l1729370366@163.com;wangwl@jnu.edu.cn
  • 作者简介:刘松燕(1998—),女,硕士研究生,研究方向为锂电池热管理,E-mail:l1729370366@163.com
  • 基金资助:
    华能集团总部科技项目(HNKJ22-H105);珠海市产学研合作项目(2220004003010)

Thermal management system for power battery in high/low-temperature environments

Songyan LIU1(), Weiliang WANG1(), Shiliang PENG1, Junfu LYU2   

  1. 1.International Energy School (Energy and Electricity Research Center), Jinan University, Zhuhai 519070, Guangdong, China
    2.Key Laboratory of Thermal Science and Power Engineering of Ministry of Education, Tsinghua University, Beijing 100084, China
  • Received:2024-04-28 Revised:2024-06-06 Online:2024-07-28 Published:2024-07-23
  • Contact: Weiliang WANG E-mail:l1729370366@163.com;wangwl@jnu.edu.cn

摘要:

热特性对电动汽车的性能有着重要的影响。低温环境严重影响锂电池的容量和寿命,而高温环境则可能导致热失控。为了保证锂电池在高低温环境下的安全高效运行,本研究提出一种兼顾高低温的热管理系统,通过保温材料和相变材料组合成的蓄热模块的灵活拆卸,实现对高低温天气下电池的散热和保温。使用Star CCM+软件进行建模和仿真。研究结果表明:动力电池在不同倍率放电后静置维持在0 ℃以上的时间最高达17 h,低温下静置与无热管理的情况下相比保温时长增加了约8倍,比单纯使用相变材料保温时长增加了近3倍,且验证了添加隔热层的必要性。在实际应用中表明停车后可直接启动,避免电动汽车频繁的预加热。在高温条件下拆掉蓄热模块使用风冷散热既节省了能源又进一步加强了该系统散热能力。以1C~3C倍率放电后,与未添加散热措施的电池组对比,添加热管理散热系统后电池组最高温度分别降低了34%、42%和48%,添加翅片后对电池的降温效果有明显作用,1C~3C放电倍率下最高温度比未添加翅片的电池组最高温度分别降低4.8%、5.4%、6.7%,放电倍率越高添加翅片的散热效果越明显。

关键词: 电动汽车, 电池热管理, 相变材料, 热管, 保温

Abstract:

Thermal characteristics have an important impact on the performance of electric vehicles. Low-temperature environments greatly affect the capacity and lifespan of lithium batteries, whereas high-temperature environments can lead to thermal runaway. In order to ensure the safe and efficient operation of lithium batteries in high- and low-temperature environments, this study proposes a thermal management system that takes into account high and low temperatures. By disassembling a battery's heat storage module, which is composed of thermal insulation materials and phase change materials, heat dissipation and heat preservation can be realized in high- and low-temperature weather. Modeling and simulation were done using Star CCM+ software. The research results showed that the static time of the power battery was maintained above 0 ℃ for up to 17 h after discharging at different rates. The holding time of the power battery at low temperature was increased by about eightfold compared with the condition without thermal management, and the holding time was increased by nearly threefold compared with the holding time when phase change materials were used alone, and the need to add an insulation layer was verified. In practical applications, it was shown that an electric vehicle could be started directly after parking, which would prevent frequent preheating. Under high-temperature conditions, removing the heat storage module and using air cooling for heat dissipation saves energy and further strengthens the system's capacity for heat dissipation. After discharging at a 1C—3C rate, the maximum temperature of the battery pack after the addition of the thermal management heat dissipation system was reduced by 34%, 42%, and 48%, respectively, compared with the maximum temperature of the battery pack without heat dissipation measures, and the addition of fins had a significant effect on the cooling of the battery. The maximum temperature at the 1C—3C discharge ratio was 4.8%, 5.4%, and 6.7% lower than that without fins, respectively. The higher the discharge ratio, the greater the heat dissipation effect.

Key words: electric vehicles, battery thermal management, phase change materials, heat pipes, heat preservation

中图分类号: