储能科学与技术 ›› 2024, Vol. 13 ›› Issue (7): 2270-2285.doi: 10.19799/j.cnki.2095-4239.2024.0294
姜森1,2(), 陈龙1, 孙创超1, 王金泽1, 李如宏1,2(), 范修林1()
收稿日期:
2024-04-03
修回日期:
2024-04-17
出版日期:
2024-07-28
发布日期:
2024-07-23
通讯作者:
李如宏,范修林
E-mail:jiangsen@zju.edu.cn;ruhong@zju.edu.cn;xlfan@zju.edu.cn
作者简介:
姜森(1995—),男,博士,研究方向为锂电池电解液,E-mail:jiangsen@zju.edu.cn;
基金资助:
Sen JIANG1,2(), Long CHEN1, Chuangchao SUN1, Jinze WANG1, Ruhong LI1,2(), Xiulin FAN1()
Received:
2024-04-03
Revised:
2024-04-17
Online:
2024-07-28
Published:
2024-07-23
Contact:
Ruhong LI, Xiulin FAN
E-mail:jiangsen@zju.edu.cn;ruhong@zju.edu.cn;xlfan@zju.edu.cn
摘要:
锂电池因具有工作电压高、能量密度高、循环寿命长以及成本低等优点,在便携式电子产品及电动汽车等领域得到广泛使用。然而,在低温条件下,充电困难、放电容量低和寿命短等问题极大地限制了其在低温环境中的应用。因此,探究锂电池低温失效机制并改善其低温性能势在必行。本文从电解液设计角度,总结了电解液对低温锂电池的影响及失效机制,着重介绍了提升锂电池低温性能的策略及机理。在低温条件下,变缓的锂离子扩散、激增的电池内阻、不稳定的电极/电解液界面和潜在的锂沉积等是造成锂电池性能衰退的主要原因。电解液工程(如优化电解液溶剂、锂盐和添加剂等组分)可以拓宽电解液的液程、构建稳定的电极/电解液界面和加快脱溶剂化速率,能够有效地改善锂电池的低温性能。此外,本文强调了低温高性能电解液设计需同时满足高的离子电导率、稳定的电极/电解液界面膜和快速脱溶剂化能力3个条件,为未来新型溶剂合成与电解液设计提供了理论指导。
中图分类号:
姜森, 陈龙, 孙创超, 王金泽, 李如宏, 范修林. 低温锂电池电解液的发展及展望[J]. 储能科学与技术, 2024, 13(7): 2270-2285.
Sen JIANG, Long CHEN, Chuangchao SUN, Jinze WANG, Ruhong LI, Xiulin FAN. Low-temperature lithium battery electrolytes: Progress and perspectives[J]. Energy Storage Science and Technology, 2024, 13(7): 2270-2285.
表1
锂离子电池常用锂盐的特性"
锂盐 | 优点 | 缺点 |
---|---|---|
高氯酸锂(LiClO4) | 高离子电导率和氧化电位,对湿度不敏感 | 高氯酸根极易与有机电解液反应,尤其在高温和大电流密度条件下 |
六氟砷酸锂(LiAsF6) | 电导率高,电化学稳定好 | As的毒性限制了该锂盐的应用 |
六氟磷酸锂(LiPF6) | 综合性能优异,高的溶解性和离子电导率 | 热稳定性差,对水非常敏感,反应生成HF等腐蚀电极材料 |
四氟硼酸锂(LiBF4) | 对湿度不敏感,热稳定性好,低温性能较好 | 离子电导率低,常用作电解液添加剂 |
二草酸硼酸锂[LiB(C2O4)2或LiBOB] | 热稳定性好,形成致密的SEI膜 | 溶解度较低,导致电解液体系的离子电导率低 |
二氟二草酸硼酸锂[LiBF2(C2O4)2] | 热稳定性好,负极成膜性能优异,形成的SEI膜阻抗小 | 溶解度较低,常用作电解液添加剂 |
三氟甲磺酸锂(LiCF3SO3) | 高抗氧化能力和热稳定性 | 成本较高,严重腐蚀Al集流体 |
双氟磺酰亚胺锂[LiN(FSO2)2或LiFSI] | 电导率高,易生成富LiF的SEI膜,低温性能优异 | 成本较高,腐蚀Al集流体 |
双三氟甲烷磺酰亚胺锂[LiN(CF3SO2)2或LiTFSI] | 电导率较高,热稳定性好,生成的SEI膜致密 | 成本较高,腐蚀Al集流体 |
1 | ARMAND M, TARASCON J M. Building better batteries[J]. Nature, 2008, 451: 652-657. |
2 | XU K. Nonaqueous liquid electrolytes for lithium-based rechargeable batteries[J]. Chemical Reviews, 2004, 104(10): 4303-4417. |
3 | TARASCON J M, ARMAND M. Issues and challenges facing rechargeable lithium batteries[J]. Nature, 2001, 414: 359-367. |
4 | XU K. Electrolytes and interphases in Li-ion batteries and beyond[J]. Chemical Reviews, 2014, 114(23): 11503-11618. |
5 | SMART M C, RATNAKUMAR B V, SURAMPUDI S. Electrolytes for low-temperature lithium batteries based on ternary mixtures of aliphatic carbonates[J]. Journal of the Electrochemical Society, 2019, 146(2): 486-492. |
6 | ZHANG S S, XU K, JOW T R. A new approach toward improved low temperature performance of Li-ion battery[J]. Electrochemistry Communications, 2002, 4(11): 928-932. |
7 | MIKHAYLIK Y V, AKRIDGE J R. Low temperature performance of Li/S batteries[J]. Journal of the Electrochemical Society, 2003, 150(3): A306. |
8 | REN Y H, YANG C W, WU B R, et al. Novel low-temperature electrolyte for Li-ion battery[J]. Advanced Materials Research, 2011, 287/288/289/290: 1283-1289. |
9 | RUSTOMJI C S, YANG Y, KIM T K, et al. Liquefied gas electrolytes for electrochemical energy storage devices[J]. Science, 2017, 356(6345): eaal4263. |
10 | DONG X L, GUO Z W, GUO Z Y, et al. Organic batteries operated at –70℃[J]. Joule, 2018, 2(5): 902-913. |
11 | FAN X L, JI X, CHEN L, et al. All-temperature batteries enabled by fluorinated electrolytes with non-polar solvents[J]. Nature Energy, 2019, 4: 882-890. |
12 | LI Z H, YAO N, YU L G, et al. Inhibiting gas generation to achieve ultralong-lifespan lithium-ion batteries at low temperatures[J]. Matter, 2023, 6(7): 2274-2292. |
13 | LUO L B, CHEN K A, CHEN H, et al. Enabling ultralow-temperature (-70 ℃) lithium-ion batteries: Advanced electrolytes utilizing weak-solvation and low-viscosity nitrile cosolvent[J]. Advanced Materials, 2024, 36(5): 2308881. |
14 | LU D, LI R H, RAHMAN M M, et al. Ligand-channel-enabled ultrafast Li-ion conduction[J]. Nature, 2024, 627: 101-107. |
15 | CHEN Y Q, HE Q, ZHAO Y, et al. Breaking solvation dominance of ethylene carbonate via molecular charge engineering enables lower temperature battery[J]. Nature Communications, 2023, 14: 8326. |
16 | MENG Y S, SRINIVASAN V, XU K. Designing better electrolytes[J]. Science, 2022, 378(6624): eabq3750. |
17 | XU K. Li-ion battery electrolytes[J]. Nature Energy, 2021, 6: 763-763. |
18 | ZHANG S B, XU K, JOW T. EIS study on the formation of solid electrolyte interface in Li-ion battery[J]. Electrochimica Acta, 2006, 51: 1636-1640. |
19 | GOODENOUGH J B, KIM Y. Challenges for rechargeable Li batteries[J]. Chemistry of Materials, 2010, 22(3): 587-603. |
20 | YAO Y X, WAN J, LIANG N Y, et al. Nucleation and growth mode of solid electrolyte interphase in Li-ion batteries[J]. Journal of the American Chemical Society, 2023, 145(14): 8001-8006. |
21 | XU K. Whether EC and PC differ in interphasial chemistry on graphitic anode and how[J]. Journal of the Electrochemical Society, 2009, 156(9): A751-755. |
22 | XING L D, ZHENG X W, SCHROEDER M, et al. Deciphering the ethylene carbonate-propylene carbonate mystery in Li-ion batteries[J]. Accounts of Chemical Research, 2018, 51(2): 282-289. |
23 | SMART M C, RATNAKUMAR B V, CHIN K B, et al. Lithium-ion electrolytes containing ester cosolvents for improved low temperature performance[J]. Journal of the Electrochemical Society, 2010, 157(12): A1361. |
24 | YAMADA Y, FURUKAWA K, SODEYAMA K, et al. Unusual stability of acetonitrile-based superconcentrated electrolytes for fast-charging lithium-ion batteries[J]. Journal of the American Chemical Society, 2014, 136(13): 5039-5046. |
25 | YAO Y X, YAO N, ZHOU X R, et al. Ethylene-carbonate-free electrolytes for rechargeable Li-ion pouch cells at sub-freezing temperatures[J]. Advanced Materials, 2022, 34(45): e2206448. |
26 | YAO Y X, CHEN X, YAO N, et al. Unlocking charge transfer limitations for extreme fast charging of Li-ion batteries[J]. Angewandte Chemie (International Ed in English), 2023, 62(4): e202214828. |
27 | XU K, VON CRESCE A, LEE U. Differentiating contributions to "ion transfer" barrier from interphasial resistance and Li+ desolvation at electrolyte/graphite interface[J]. Langmuir, 2010, 26(13): 11538-11543. |
28 | LI Q Y, LU D P, ZHENG J M, et al. Li+-desolvation dictating lithium-ion battery's low-temperature performances[J]. ACS Applied Materials & Interfaces, 2017, 9(49): 42761-42768. |
29 | QIN M S, LIU M C, ZENG Z Q, et al. Rejuvenating propylene carbonate-based electrolyte through nonsolvating interactions for wide-temperature Li-ions batteries[J]. Advanced Energy Materials, 2022, 12(48): 2201801. |
30 | YUAN S, CAO S K, CHEN X, et al. Deshielding anions enable solvation chemistry control of LiPF6-based electrolyte toward low-temperature lithium-ion batteries[J]. Advanced Materials, 2024, 36(16): e2311327. |
31 | WALDMANN T, HOGG B I, KASPER M, et al. Interplay of operational parameters on lithium deposition in lithium-ion cells: Systematic measurements with reconstructed 3-electrode pouch full cells[J]. Journal of the Electrochemical Society, 2016, 163(7): A1232-A1238. |
32 | WENG S T, ZHANG X, YANG G J, et al. Temperature-dependent interphase formation and Li+ transport in lithium metal batteries[J]. Nature Communications, 2023, 14: 4474. |
33 | CHEN X, ZHANG Q. Atomic insights into the fundamental interactions in lithium battery electrolytes[J]. Accounts of Chemical Research, 2020, 53(9): 1992-2002. |
34 | HUANG K S, BI S, KURT B, et al. Regulation of SEI formation by anion receptors to achieve ultra-stable lithium-metal batteries[J]. Angewandte Chemie (International Ed in English), 2021, 60(35): 19232-19240. |
35 | YAAKOV D, GOFER Y, AURBACH D, et al. On the study of electrolyte solutions for Li-ion batteries that can work over a wide temperature range[J]. Journal of the Electrochemical Society, 2010, 157: A1383-A1391. |
36 | ZHANG S, XU K, JOW T. Low-temperature performance of Li-ion cells with a LiBF4-based electrolyte[J]. Journal of Solid State Electrochemistry, 2003, 7(3): 147-151. |
37 | MANDAL B K, PADHI A K, SHI Z, et al. New low temperature electrolytes with thermal runaway inhibition for lithium-ion rechargeable batteries[J]. Journal of Power Sources, 2006, 162(1): 690-695. |
38 | EIN-ELI Y, THOMAS S R, CHADHA R, et al. Li-ion battery electrolyte formulated for low-temperature applications[J]. Journal of the Electrochemical Society, 1997, 144(3): 823-829. |
39 | ZHAO Q P, ZHANG Y, TANG F J, et al. Mixed salts of lithium difluoro (oxalate) borate and lithium tetrafluorobotate electrolyte on low-temperature performance for lithium-ion batteries[J]. Journal of the Electrochemical Society, 2017, 164(9): A1873-A1880. |
40 | LI F Q, GONG Y, JIA G F, et al. A novel dual-salts of LiTFSI and LiODFB in LiFePO4-based batteries for suppressing aluminum corrosion and improving cycling stability[J]. Journal of Power Sources, 2015, 295: 47-54. |
41 | YANG J Z, FONSECA RODRIGUES M T, SON S B, et al. Dual-salt electrolytes to effectively reduce impedance rise of high-nickel lithium-ion batteries[J]. ACS Applied Materials & Interfaces, 2021, 13(34): 40502-40512. |
42 | WANG Y D, ZHENG H, HONG L, et al. Lithium difluoro(bisoxalato) phosphate-based multi-salt low concentration electrolytes for wide-temperature lithium metal batteries: Experiments and theoretical calculations[J]. Chemical Engineering Journal, 2022, 445: 136802. |
43 | WANG Q D, ZHAO C L, WANG J L, et al. High entropy liquid electrolytes for lithium batteries[J]. Nature Communications, 2023, 14: 440. |
44 | TAN S, SHADIKE Z, CAI X Y, et al. Review on low-temperature electrolytes for lithium-ion and lithium metal batteries[J]. Electrochemical Energy Reviews, 2023, 6(1): 35. |
45 | LAI P B, HUA H M, HUANG B Y, et al. A carboxylic ester-based electrolyte with additive to improve performance of lithium batteries at ultra-low temperature[J]. Journal of the Electrochemical Society, 2022, 169(10): 100539. |
46 | SMART M C, RATNAKUMAR B V, SURAMPUDI S. Use of organic esters as cosolvents in electrolytes for lithium-ion batteries with improved low temperature performance[J]. Journal of the Electrochemical Society, 2002, 149(4): A361. |
47 | YOO D J, LIU Q, COHEN O, et al. Rational design of fluorinated electrolytes for low temperature lithium-ion batteries[J]. Advanced Energy Materials, 2023, 13(20): 2204182. |
48 | MO Y B, LIU G P, YIN Y, et al. Fluorinated solvent molecule tuning enables fast-charging and low-temperature lithium-ion batteries[J]. Advanced Energy Materials, 2023, 13(32): 2301285. |
49 | ZHANG G Z, CHANG J, WANG L G, et al. A monofluoride ether-based electrolyte solution for fast-charging and low-temperature non-aqueous lithium metal batteries[J]. Nature Communications, 2023, 14: 1081. |
50 | HAREGEWOIN A M, WOTANGO A S, HWANG B J. Electrolyte additives for lithium ion battery electrodes: Progress and perspectives[J]. Energy & Environmental Science, 2016, 9(6): 1955-1988. |
51 | ZHAO H J, YU X Q, LI J D, et al. Film-forming electrolyte additives for rechargeable lithium-ion batteries: Progress and outlook[J]. Journal of Materials Chemistry A, 2019, 7(15): 8700-8722. |
52 | LIAO L, CHENG X Q, MA Y L, et al. Fluoroethylene carbonate as electrolyte additive to improve low temperature performance of LiFePO4 electrode[J]. Electrochimica Acta, 2013, 87: 466-472. |
53 | ZHANG X Q, CHENG X B, CHEN X, et al. Fluoroethylene carbonate additives to render uniform Li deposits in lithium metal batteries[J]. Advanced Functional Materials, 2017, 27(10): 1605989. |
54 | KIM K, PARK I, HA S Y, et al. Understanding the thermal instability of fluoroethylene carbonate in LiPF6-based electrolytes for lithium ion batteries[J]. Electrochimica Acta, 2017, 225: 358-368. |
55 | KANG Y Y, WANG J, WANG M, et al. Multifunctional fluoroethylene carbonate for improving high-temperature performance of LiNi0.8Mn0.1Co0.1O2||SiOx@Graphite lithium-ion batteries[J]. ACS Applied Energy Materials, 2020, 3(10): 9989-10000. |
56 | ZHAN Y X, LIU Z Y, GENG Y Y, et al. Fluorinating solid electrolyte interphase by regulating polymer-solvent interaction in lithium metal batteries[J]. Energy Storage Materials, 2023, 60: 102799. |
57 | LIU B X, LI B, GUAN S Y. Effect of fluoroethylene carbonate additive on low temperature performance of Li-ion batteries[J]. Electrochemical and Solid-State Letters, 2012, 15(6): A77. |
58 | HOU T Z, YANG G, RAJPUT N, et al. The influence of FEC on the solvation structure and reduction reaction of LiPF6/EC electrolytes and its implication for solid electrolyte interphase formation[J]. Nano Energy, 2019, 64: 103881. |
59 | HE H, WANG Y, LI M, et al. Effect of fluoroethylene carbonate additive on the low-temperature performance of lithium-ion batteries[J]. Journal of Electroanalytical Chemistry, 2022, 925: 116870. |
60 | HU S G, ZHAO H J, QIAN Y X, et al. Improved high-temperature performance of LiNi0.5Co0.2Mn0.3O2/artificial graphite lithium ion pouch cells by difluoroethylene carbonate[J]. Journal of Energy Storage, 2023, 57: 106266. |
61 | SONG G, YI Z L, SU F Y, et al. New insights into the mechanism of LiDFBOP for improving the low-temperature performance via the rational design of an interphase on a graphite anode[J]. ACS Applied Materials & Interfaces, 2021, 13(33): 40042-40052. |
62 | WRODNIGG G H, BESENHARD J O, WINTER M. Ethylene sulfite as electrolyte additive for lithium-ion cells with graphitic anodes[J]. Journal of the Electrochemical Society, 1999, 146(2): 470-472. |
63 | WU Z L, LI S G, ZHENG Y Z, et al. The roles of sulfur-containing additives and their working mechanism on the temperature-dependent performances of Li-ion batteries[J]. Journal of the Electrochemical Society, 2018, 165(11): A2792-A2800. |
64 | WU S P, LIN Y L, XING L D, et al. Stabilizing LiCoO2/graphite at high voltages with an electrolyte additive[J]. ACS Applied Materials & Interfaces, 2019, 11(19): 17940-17951. |
65 | WANG K, XING L D, ZHI H Z, et al. High stability graphite/electrolyte interface created by a novel electrolyte additive: A theoretical and experimental study[J]. Electrochimica Acta, 2018, 262: 226-232. |
66 | QIAN Y X, CHU Y L, ZHENG Z T, et al. A new cyclic carbonate enables high power/low temperature lithium-ion batteries[J]. Energy Storage Materials, 2022, 45: 14-23. |
67 | GUO R D, CHE Y X, LAN G Y, et al. Tailoring low-temperature performance of a lithium-ion battery via rational designing interphase on an anode[J]. ACS Applied Materials & Interfaces, 2019, 11(41): 38285-38293. |
68 | YANG B W, ZHANG H, YU L, et al. Lithium difluorophosphate as an additive to improve the low temperature performance of LiNi0.5Co0.2Mn0.3O2/graphite cells[J]. Electrochimica Acta, 2016, 221: 107-114. |
69 | JONES J P, SMART M C, KRAUSE F C, et al. The effect of electrolyte additives upon lithium plating during low temperature charging of graphite-LiNiCoAlO2 lithium-ion three electrode cells[J]. Journal of the Electrochemical Society, 2020, 167(2): 020536. |
70 | TÄUBERT C, FLEISCHHAMMER M, WOHLFAHRT-MEHRENS M, et al. LiBOB as electrolyte salt or additive for lithium-ion batteries based on LiNi0.8Co0.15Al0.05O2/graphite[J]. Journal of the Electrochemical Society, 2010, 157(6): A721. |
71 | CHEN H X, LIU B, WANG Y, et al. Insight into wide temperature electrolyte based on lithiumdifluoro(oxalate)borate for high voltage lithium-ion batteries[J]. Journal of Alloys and Compounds, 2021, 876: 159966. |
72 | SHI P C, LIU F F, FENG Y Z, et al. The synergetic effect of lithium bisoxalatodifluorophosphate and fluoroethylene carbonate on dendrite suppression for fast charging lithium metal batteries[J]. Small, 2020, 16(30): e2001989. |
73 | XU G J, HUANG S Q, CUI Z L, et al. Functional additives assisted ester-carbonate electrolyte enables wide temperature operation of a high-voltage (5 V-Class) Li-ion battery[J]. Journal of Power Sources, 2019, 416: 29-36. |
74 | WANG J H, ZHENG Q F, FANG M M, et al. Concentrated electrolytes widen the operating temperature range of lithium-ion batteries[J]. Advanced Science, 2021, 8(18): e2101646. |
75 | CAO X, JIA H, XU W, et al. Review—localized high-concentration electrolytes for lithium batteries[J]. Journal of the Electrochemical Society, 2021, 168(1): 010522. |
76 | CHEN S R, ZHENG J M, MEI D H, et al. High-voltage lithium-metal batteries enabled by localized high-concentration electrolytes[J]. Advanced Materials, 2018, 30(21): e1706102. |
77 | LEI S, ZENG Z Q, LIU M C, et al. Balanced solvation/de-solvation of electrolyte facilitates Li-ion intercalation for fast charging and low-temperature Li-ion batteries[J]. Nano Energy, 2022, 98: 107265. |
78 | WU Y Q, ZHANG J, LIU J L, et al. Boosting reversible charging of Li-ion batteries at low temperatures by a synergy of propylene carbonate-based electrolyte and defective graphite[J]. Nano Research, 2024, 17(3): 1491-1499. |
79 | CHENG L W, WANG Y Y, YANG J, et al. An ultrafast and stable Li-metal battery cycled at -40℃[J]. Advanced Functional Materials, 2023, 33(11): 2212349. |
80 | WANG Z C, HAN R, HUANG D, et al. Co-intercalation-free ether-based weakly solvating electrolytes enable fast-charging and wide-temperature lithium-ion batteries[J]. ACS Nano, 2023, 17(18): 18103-18113. |
81 | AGUILERA L, SCHEERS J, MATIC A. Enhanced low-temperature ionic conductivity via different Li+ solvated clusters in organic solvent/ionic liquid mixed electrolytes[J]. Physical Chemistry Chemical Physics: PCCP, 2016, 18(36): 25458-25464. |
82 | YANG Y, DAVIES D M, YIN Y J, et al. High-efficiency lithium-metal anode enabled by liquefied gas electrolytes[J]. Joule, 2019, 3(8): 1986-2000. |
83 | YAO N, CHEN X, FU Z H, et al. Applying classical, Ab initio, and machine-learning molecular dynamics simulations to the liquid electrolyte for rechargeable batteries[J]. Chemical Reviews, 2022, 122(12): 10970-11021. |
[1] | 周洪, 辛竹琳, 付豪, 张强, 魏凤. 基于专利数据挖掘的固态锂电池关键材料分析[J]. 储能科学与技术, 2024, 13(7): 2386-2398. |
[2] | 廖世接, 魏颖, 黄云辉, 胡仁宗, 许恒辉. 间二氟苯稀释剂稳定电极界面助力低温锂金属电池[J]. 储能科学与技术, 2024, 13(7): 2124-2130. |
[3] | 李征, 杨振忠, 王琼, 胡仁宗. 基于专利情报分析的锂离子电池用低温电解液的发展现状和研究进展[J]. 储能科学与技术, 2024, 13(7): 2317-2326. |
[4] | 王宇豪, 李志勇, 郭新. 聚合物基电解质在低温固态锂电池中的应用与挑战[J]. 储能科学与技术, 2024, 13(7): 2243-2258. |
[5] | 郝峻丰, 朱璟, 申晓宇, 岑官骏, 乔荣涵, 张新新, 田孟羽, 金周, 詹元杰, 孙蔷馥, 闫勇, 贲留斌, 俞海龙, 刘燕燕, 黄学杰. 锂电池百篇论文点评(2024.04.01—2024.05.31)[J]. 储能科学与技术, 2024, 13(7): 2361-2376. |
[6] | 李臣, 张会林, 张建平. 基于核函数和超参数优化的退役锂电池健康状态估计[J]. 储能科学与技术, 2024, 13(6): 2010-2021. |
[7] | 陈艺, 秦琪, 赵龙, 陈子坤, 王安宁. 新型储能技术的中国专利布局分析[J]. 储能科学与技术, 2024, 13(6): 2089-2098. |
[8] | 甄箫斐, 王贝贝, 张小虎, 孙一铭, 曹文炅, 董缇. 锂电池储能系统热失控气体生成及扩散规律研究[J]. 储能科学与技术, 2024, 13(6): 1986-1994. |
[9] | 刘宝泉, 曹小雨. 锂电池热失控早期典型气体精准检测方法[J]. 储能科学与技术, 2024, 13(6): 1995-2009. |
[10] | 时海欧. 基于深度学习的锂电池故障分析及应用[J]. 储能科学与技术, 2024, 13(6): 2054-2056. |
[11] | 冯娜娜, 杨明, 惠周利, 王瑞洁, 宁弘扬. 基于蚁狮优化高斯过程回归的锂电池剩余使用寿命预测[J]. 储能科学与技术, 2024, 13(5): 1643-1652. |
[12] | 姜媛媛, 屠芳芳, 张芳平, 王盈来, 蔡佳文, 杨东辉, 李艳红, 相佳媛, 夏新辉, 傅继澎. 高性能磷酸铁锂电池补锂技术及机制[J]. 储能科学与技术, 2024, 13(5): 1435-1442. |
[13] | 谢欣兵, 杨凯悦, 杜晓钟. 锂电池极片辊压过程力学行为与结构[J]. 储能科学与技术, 2024, 13(5): 1699-1706. |
[14] | 朱璟, 郝峻丰, 孙蔷馥, 张新新, 申晓宇, 岑官骏, 乔荣涵, 田孟羽, 金周, 詹元杰, 闫勇, 贲留斌, 俞海龙, 刘燕燕, 黄学杰. 锂电池百篇论文点评(2024.2.1—2024.3.31)[J]. 储能科学与技术, 2024, 13(5): 1398-1416. |
[15] | 汤元会, 袁博兴, 李杰, 张云龙. 圆柱形锂离子电池在针刺条件下的安全性研究[J]. 储能科学与技术, 2024, 13(4): 1326-1334. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||