1 |
GOODENOUGH J B, KIM Y. Challenges for rechargeable Li batteries[J]. Chemistry of Materials, 2010, 22(3): 587-603. DOI: 10.1021/cm901452z.
|
2 |
MANTHIRAM A, CHUNG S H, ZU C X. Lithium-sulfur batteries: Progress and prospects[J]. Advanced Materials, 2015, 27(12): 1980-2006. DOI: 10.1002/adma.201405115.
|
3 |
张怡, 葛筱渔, 李真, 等. 用于锂电池监测的声学和光学传感技术研究进展[J]. 储能科学与技术, 2024, 13(1): 167-177. DOI: 10.19799/j.cnki.2095-4239.2023.0807.
|
|
ZHANG Y, GE X Y, LI Z, et al. Progress on acoustic and optical sensing technologies for lithium rechargeable batteries[J]. Energy Storage Science and Technology, 2024, 13(1): 167-177. DOI: 10.19799/j.cnki.2095-4239.2023.0807.
|
4 |
QUARTARONE E, MUSTARELLI P. Electrolytes for solid-state lithium rechargeable batteries: Recent advances and perspectives[J]. Chemical Society Reviews, 2011, 40(5): 2525-2540. DOI: 10.1039/C0CS00081G.
|
5 |
吴敬华, 杨菁, 刘高瞻, 等. 固态锂电池十年(2011—2021)回顾与展望[J]. 储能科学与技术, 2022, 11(9): 2713-2745. DOI: 10.19799/j.cnki.2095-4239.2022.0309.
|
|
WU J H, YANG J, LIU G Z, et al. Review and prospective of solid-state lithium batteries in the past decade(2011—2021)[J]. Energy Storage Science and Technology, 2022, 11(9): 2713-2745. DOI: 10.19799/j.cnki.2095-4239.2022.0309.
|
6 |
RAJ V, AETUKURI N P B, NANDA J. Solid state lithium metal batteries-Issues and challenges at the lithium-solid electrolyte interface[J]. Current Opinion in Solid State and Materials Science, 2022, 26(4): 100999. DOI: 10.1016/j.cossms.2022.100999.
|
7 |
GAO Z H, SUN H B, FU L, et al. Promises, challenges, and recent progress of inorganic solid-state electrolytes for all-solid-state lithium batteries[J]. Advanced Materials, 2018, 30(17): e1705702. DOI: 10.1002/adma.201705702.
|
8 |
张鹏, 赖兴强, 沈俊荣, 等. 固态锂电池研究及产业化进展[J]. 储能科学与技术, 2021, 10(3): 896-904. DOI: 10.19799/j.cnki.2095-4239.2020.0408.
|
|
ZHANG P, LAI X Q, SHEN J R, et al. Research and industrialization progress of solid-state lithium battery[J]. Energy Storage Science and Technology, 2021, 10(3): 896-904. DOI: 10.19799/j.cnki.2095-4239.2020.0408.
|
9 |
杨建锋, 李林艳, 吴振岳, 等. 无机固态锂离子电池电解质的研究进展[J]. 储能科学与技术, 2019, 8(5): 829-837. DOI: 10.12028/j.issn.2095-4239.2019.0056.
|
|
YANG J F, LI L Y, WU Z Y, et al. Progress of inorganic solid electrolyte for lithium ion batteries[J]. Energy Storage Science and Technology, 2019, 8(5): 829-837. DOI: 10.12028/j.issn.2095-4239.2019.0056.
|
10 |
LIN Z, LIU Z C, DUDNEY N J, et al. Lithium superionic sulfide cathode for all-solid lithium-sulfur batteries[J]. ACS Nano, 2013, 7(3): 2829-2833. DOI: 10.1021/nn400391h.
|
11 |
张建军, 董甜甜, 杨金凤, 等. 全固态聚合物锂电池的科研进展、挑战与展望[J]. 储能科学与技术, 2018, 7(5): 861-868. DOI: 10.12028/j.issn.2095-4239.2018.0139.
|
|
ZHANG J J, DONG T T, YANG J F, et al. Research progress, challenge and perspective of all-solid-state polymer lithium batteries[J]. Energy Storage Science and Technology, 2018, 7(5): 861-868. DOI: 10.12028/j.issn.2095-4239.2018.0139.
|
12 |
姜鹏峰, 石元盛, 李康万, 等. 固态电解质锂镧锆氧(LLZO)的研究进展[J]. 储能科学与技术, 2020, 9(2): 523-537. DOI: 10.19799/j.cnki.2095-4239.2019.0286.
|
|
JIANG P F, SHI Y S, LI K W, et al. Recent progress on the Li7La3Zr2O12(LLZO) solid electrolyte[J]. Energy Storage Science and Technology, 2020, 9(2): 523-537. DOI: 10.19799/j.cnki.2095-4239.2019.0286.
|
13 |
CHEN Y, WEN K H, CHEN T H, et al. Recent progress in all-solid-state lithium batteries: The emerging strategies for advanced electrolytes and their interfaces[J]. Energy Storage Materials, 2020, 31: 401-433. DOI: 10.1016/j.ensm.2020.05.019.
|
14 |
李栋, 雷超, 赖华, 等. 全固态锂离子电池正极与石榴石型固体电解质界面的研究进展[J]. 无机材料学报, 2019, 34(7): 694-702. DOI: 10.15541/jim20180512.
|
|
LI D, LEI C, LAI H, et al. Recent advancements in interface between cathode and garnet solid electrolyte for all solid state Li-ion batteries[J]. Journal of Inorganic Materials, 2019, 34(7): 694-702. DOI: 10.15541/jim20180512.
|
15 |
POLCZYK T, NAGAI A. Covalent organic framework-based electrolytes for lithium solid-state batteries—Recent progress[J]. Batteries, 2023, 9(9): 469. DOI: 10.3390/batteries9090469.
|
16 |
陈龙, 池上森, 董源, 等. 全固态锂电池关键材料—固态电解质研究进展[J]. 硅酸盐学报, 2018, 46(1): 21-34. DOI: 10.14062/j.issn.0454-5648.2018.01.03.
|
|
CHEN L, CHI S S, DONG Y, et al. Research progress of key materials for all-solid-state lithium batteries[J]. Journal of the Chinese Ceramic Society, 2018, 46(1): 21-34. DOI: 10.14062/j.issn.0454-5648.2018.01.03.
|
17 |
GAN X T, YANG Z H, SONG Z P. Solid-state batteries based on organic cathode materials[J]. Batteries & Supercaps, 2023, 6(6): 2300001. DOI: 10.1002/batt.202300001.
|
18 |
杨源, 胡乃方, 金永成, 等. 富锂正极材料在全固态锂电池中的研究进展[J]. 物理学报, 2023, 72(11): 328-338.
|
|
YANG Y, HU N F, JIN Y C, et al. Research advance of lithium-rich cathode materials in all-solid-state lithium batteries[J]. Acta Physica Sinica, 2023, 72(11): 328-338.
|
19 |
SCHLEM R, BURMEISTER C F, MICHALOWSKI P, et al. Energy storage materials for solid-state batteries: Design by mechanochemistry[J]. Advanced Energy Materials, 2021, 11(30): 2101022. DOI: 10.1002/aenm.202101022.
|
20 |
徐红杰, 汪光辉, 苏钰杰, 等. "双碳" 背景下新能源固态电池材料理论设计与电池技术开发进展[J]. 过程工程学报, 2023, 23(7): 943-957. DOI: 10.12034/j.issn.1009-606X.223113.
|
|
XU H J, WANG G H, SU Y J, et al. Theoretical design of new energy solid-state battery materials and development of battery technology under the background of carbon peaking and carbon neutrality[J]. The Chinese Journal of Process Engineering, 2023, 23(7): 943-957. DOI: 10.12034/j.issn.1009-606X.223113.
|
21 |
HU S Y, HUANG C. Machine-learning approaches for the discovery of electrolyte materials for solid-state lithium batteries[J]. Batteries, 2023, 9(4): 228. DOI: 10.3390/batteries9040228.
|
22 |
BLOCK A, SONG C H. Exploring the characteristics of technological knowledge interaction dynamics in the field of solid-state batteries: A patent-based approach[J]. Journal of Cleaner Production, 2022, 353: 131689. DOI: 10.1016/j.jclepro.2022.131689.
|
23 |
李茜, 郁亚娟, 张之琦, 等. 全固态锂电池的固态电解质进展与专利分析[J]. 储能科学与技术, 2021, 10(1): 77-86. DOI: 10.19799/j.cnki.2095-4239.2020.0205.
|
|
LI X, YU Y J, ZHANG Z Q, et al. Advance and patent analysis of solid electrolyte in solid-state lithium batteries[J]. Energy Storage Science and Technology, 2021, 10(1): 77-86. DOI: 10.19799/j.cnki.2095-4239.2020.0205.
|
24 |
周洪, 魏凤, 吴永庆. 基于专利的无机固态锂电池电解质技术发展研究[J]. 储能科学与技术, 2020, 9(3): 1001-1007. DOI: 10.19799/j.cnki.2095-4239.2019.0244.
|
|
ZHOU H, WEI F, WU Y Q. Research on the development of inorganic solid-state electrolyte for lithium battery based on patent analysis[J]. Energy Storage Science and Technology, 2020, 9(3): 1001-1007. DOI: 10.19799/j.cnki.2095-4239.2019.0244.
|
25 |
汤匀, 岳芳, 郭楷模, 等. 全固态锂电池技术发展趋势与创新能力分析[J]. 储能科学与技术, 2022, 11(1): 359-369. DOI: 10.19799/j.cnki.2095-4239.2021.0350.
|
|
TANG Y, YUE F, GUO K M, et al. Analysis of the development trend and the innovation ability of an all-solid-state lithium battery technology[J]. Energy Storage Science and Technology, 2022, 11(1): 359-369. DOI: 10.19799/j.cnki.2095-4239.2021.0350.
|
26 |
吴江, 王凯利, 董克, 等. 信息计量领域网络分析方法应用研究综述[J]. 情报学报, 2021, 40(10): 1118-1128. DOI: 10.3772/j.issn.1000-0135.2021.10.009.
|
|
WU J, WANG K L, DONG K, et al. Review of application research on network analysis in informetrics[J]. Journal of the China Society for Scientific and Technical Information, 2021, 40(10): 1118-1128. DOI: 10.3772/j.issn.1000-0135.2021.10.009.
|
27 |
BANITABA S N, SEMNANI D, HEYDARI-SOURESHJANI E, et al. Fabrication and performance evaluation of CuO, NiO, and Co3O4-embedded electrospun electrolytes: Suitable for lithium polymer solvent-free batteries[J]. Journal of Alloys and Compounds, 2022, 924: 166482. DOI: 10.1016/j.jallcom.2022.166482.
|
28 |
王继锋, 屈涛, 陈微微, 等. Ni0.92Co0.05Mn0.03(OH)2三元前驱体结构对正极材料性能的影响[J]. 化工新型材料, 2023, 51(S2): 357-362. DOI: 10.19817/j.cnki.issn1006-3536.2023.S2.066.
|
|
WANG J F, QU T, CHEN W W, et al. Effect of ternary precursor structure of Ni0.92Co0.05Mn0.03(OH)2 on properties of cathode materials[J]. New Chemical Materials, 2023, 51(S2): 357-362. DOI: 10.19817/j.cnki.issn1006-3536.2023.S2.066.
|
29 |
BORDES A, EOM K, FULLER T F. The effect of fluoroethylene carbonate additive content on the formation of the solid-electrolyte interphase and capacity fade of Li-ion full-cell employing nano Si-graphene composite anodes[J]. Journal of Power Sources, 2014, 257: 163-169. DOI: 10.1016/j.jpowsour.2013.12.144.
|
30 |
LU J Y, LI Y. Perovskite‐type Li‐ion solid electrolytes: A review[J]. Journal of Materials Science: Materials in Electronics, 2021, 32(8): 9736-9754. DOI: 10.1007/s10854-021-05699-8.
|
31 |
高鹏, 张珊, 贲留斌, 等. 铌元素在锂离子电池中的应用[J]. 储能科学与技术, 2020, 9(5): 1443-1453. DOI: 10.19799/j.cnki.2095-4239.2020.0109.
|
|
GAO P, ZHANG S, BEN L B, et al. Application of niobium in lithium ion batteries[J]. Energy Storage Science and Technology, 2020, 9(5): 1443-1453. DOI: 10.19799/j.cnki.2095-4239.2020.0109.
|
32 |
BARNES P, ZUO Y X, DIXON K, et al. Electrochemically induced amorphous-to-rock-salt phase transformation in niobium oxide electrode for Li-ion batteries[J]. Nature Materials, 2022, 21(7): 795-803. DOI: 10.1038/s41563-022-01242-0.
|