1 |
LI C, ZHANG H H, DING P, et al. Deep feature extraction in lifetime prognostics of lithium-ion batteries: Advances, challenges and perspectives[J]. Renewable and Sustainable Energy Reviews, 2023, 184: 113576. DOI: 10.1016/j.rser.2023.113576.
|
2 |
SEVERSON K A, ATTIA P M, JIN N, et al. Data-driven prediction of battery cycle life before capacity degradation[J]. Nature Energy, 2019, 4: 383-391. DOI: 10.1038/s41560-019-0356-8.
|
3 |
QIAN C, XU B H, CHANG L, et al. Convolutional neural network based capacity estimation using random segments of the charging curves for lithium-ion batteries[J]. Energy, 2021, 227: 120333. DOI: 10.1016/j.energy.2021.120333.
|
4 |
QIAN C, GUAN H S, XU B H, et al. A CNN-SAM-LSTM hybrid neural network for multi-state estimation of lithium-ion batteries under dynamical operating conditions[J]. Energy, 2024, 294: 130764. DOI: 10.1016/j.energy.2024.130764.
|
5 |
LIN C P, XU J, MEI X S. Improving state-of-health estimation for lithium-ion batteries via unlabeled charging data[J]. Energy Storage Materials, 2023, 54: 85-97. DOI: 10.1016/j.ensm.2022.10.030.
|
6 |
XIONG R, TIAN J P, SHEN W X, et al. Semi-supervised estimation of capacity degradation for lithium ion batteries with electrochemical impedance spectroscopy[J]. Journal of Energy Chemistry, 2023, 76: 404-413. DOI: 10.1016/j.jechem.2022.09.045.
|
7 |
CHE Y H, HU X S, LIN X K, et al. Health prognostics for lithium-ion batteries: Mechanisms, methods, and prospects[J]. Energy & Environmental Science, 2023, 16(2): 338-371. DOI: 10.1039/D2EE03019E.
|
8 |
XU L, DENG Z W, XIE Y, et al. A novel hybrid physics-based and data-driven approach for degradation trajectory prediction in Li-ion batteries[J]. IEEE Transactions on Transportation Electrification, 2023, 9(2): 2628-2644. DOI: 10.1109/TTE.2022.3212024.
|
9 |
STRANGE C, DOS REIS G. Prediction of future capacity and internal resistance of Li-ion cells from one cycle of input data[J]. Energy and AI, 2021, 5: 100097. DOI: 10.1016/j.egyai.2021.100097.
|
10 |
ZHOU Z Y, LIU Y G, YOU M X, et al. Two-stage aging trajectory prediction of LFP lithium-ion battery based on transfer learning with the cycle life prediction[J]. Green Energy and Intelligent Transportation, 2022, 1(1): 100008. DOI: 10.1016/j.geits.2022.100008.
|
11 |
ZHAO G C, KANG Y Z, HUANG P, et al. Battery health prognostic using efficient and robust aging trajectory matching with ensemble deep transfer learning[J]. Energy, 2023, 282: 128228. DOI: 10.1016/j.energy.2023.128228.
|
12 |
CHE Y H, FOREST F, ZHENG Y S, et al. Health prediction for lithium-ion batteries under unseen working conditions[J]. IEEE Transactions on Industrial Electronics, 2024, PP(99): 1-11. DOI: 10.1109/TIE.2024.3379664.
|
13 |
QIAN C, XU B H, XIA Q, et al. SOH prediction for lithium-Ion batteries by using historical state and future load information with an AM-seq2seq model[J]. Applied Energy, 2023, 336: 120793. DOI: 10.1016/j.apenergy.2023.120793.
|
14 |
唐梓巍, 师玉璞, 张雨禅, 等. 基于Informer神经网络的锂离子电池容量退化轨迹预测[J]. 储能科学与技术, 2024, 13(5): 1658-1666. DOI: 10.19799/j.cnki.2095-4239.2023.0812.
|
|
TANG Z W, SHI Y P, ZHANG Y S, et al. Prediction of lithium-ion battery capacity degradation trajectory based on Informer[J]. Energy Storage Science and Technology, 2024, 13(5): 1658-1666. DOI: 10.19799/j.cnki.2095-4239.2023.0812.
|
15 |
HAN C, GAO Y C, CHEN X, et al. A self-adaptive, data-driven method to predict the cycling life of lithium-ion batteries[J]. InfoMat, 2024, 6(4): e12521. DOI: 10.1002/inf2.12521.
|
16 |
LI W H, ZHANG H T, VAN VLIJMEN B, et al. Forecasting battery capacity and power degradation with multi-task learning[J]. Energy Storage Materials, 2022, 53: 453-466. DOI: 10.1016/j.ensm.2022.09.013.
|
17 |
LIN C P, XU J, JIANG D L, et al. A comparative study of data-driven battery capacity estimation based on partial charging curves[J]. Journal of Energy Chemistry, 2024, 88: 409-420. DOI: 10.1016/j.jechem.2023.09.025.
|
18 |
MA Y, YAO M H, LIU H C, et al. State of health estimation and remaining useful life prediction for lithium-ion batteries by improved particle swarm optimization-back propagation neural network[J]. Journal of Energy Storage, 2022, 52: 104750. DOI: 10.1016/j.est.2022.104750.
|
19 |
RUAN H K, WEI Z B, SHANG W T, et al. Artificial intelligence-based health diagnostic of lithium-ion battery leveraging transient stage of constant current and constant voltage charging[J]. Applied Energy, 2023, 336: 120751. DOI: 10.1016/j.apenergy. 2023.120751.
|
20 |
QIAN C, XU B H, XIA Q, et al. A dual-input neural network for online state-of-charge estimation of the lithium-ion battery throughout its lifetime[J]. Materials, 2022, 15(17): 5933. DOI: 10.3390/ma15175933.
|
21 |
管鸿盛, 钱诚, 徐炳辉, 等. 融合自注意力机制与门控循环单元网络的宽工况锂离子电池SOC估计[J]. 储能科学与技术, 2023, 12(7): 2229-2237. DOI: 10.19799/j.cnki.2095-4239.2023.0292.
|
|
GUAN H S, QIAN C, XU B H, et al. SAM-GRU-based fusion neural network for SOC estimation in lithium-ion batteries under a wide range of operating conditions[J]. Energy Storage Science and Technology, 2023, 12(7): 2229-2237. DOI: 10.19799/j.cnki. 2095-4239.2023.0292.
|
22 |
SUN B, PAN J L, WU Z Y, et al. Adaptive evolution enhanced physics-informed neural networks for time-variant health prognosis of lithium-ion batteries[J]. Journal of Power Sources, 2023, 556: 232432. DOI: 10.1016/j.jpowsour.2022.232432.
|
23 |
MA G J, XU S P, JIANG B B, et al. Real-time personalized health status prediction of lithium-ion batteries using deep transfer learning[J]. Energy & Environmental Science, 2022, 15(10): 4083-4094. DOI: 10.1039/D2EE01676A.
|