储能科学与技术 ›› 2024, Vol. 13 ›› Issue (9): 3182-3197.doi: 10.19799/j.cnki.2095-4239.2024.0698
谢莹莹1(), 邓斌1, 张与之1, 王晓旭1(
), 张林峰1,2
收稿日期:
2024-07-10
修回日期:
2024-08-28
出版日期:
2024-09-28
发布日期:
2024-09-20
通讯作者:
王晓旭
E-mail:xieyy@dp.tech;wangxx@dp.tech
作者简介:
谢莹莹(1997—),女,学士,主要从事BDA平台产品研发,E-mail:xieyy@dp.tech;
Yingying XIE1(), Bin DENG1, Yuzhi ZHANG1, Xiaoxu WANG1(
), Linfeng ZHANG1,2
Received:
2024-07-10
Revised:
2024-08-28
Online:
2024-09-28
Published:
2024-09-20
Contact:
Xiaoxu WANG
E-mail:xieyy@dp.tech;wangxx@dp.tech
摘要:
在AI for Science时代,电池设计自动化智能研发(battery design automation,BDA)平台通过整合先进的人工智能技术,为电池研发领域带来了革命性进展。BDA平台覆盖了文献调研、实验设计、合成制备、表征测试和分析优化这五个电池研发的关键环节,利用机器学习、多尺度建模、预训练模型等先进算法,结合软件工程开发用户交互友好的工具,加速从理论设计到实验验证的整个电池研发周期。通过自动化的实验设计、合成制备、表征测试和性能优化,BDA平台不仅提升了研发效率,还提高了电池设计的精确度和可靠性,推动了电池技术向更高能量密度、更长循环寿命和更低成本的方向发展。
中图分类号:
谢莹莹, 邓斌, 张与之, 王晓旭, 张林峰. AI for Science时代下的电池平台化智能研发[J]. 储能科学与技术, 2024, 13(9): 3182-3197.
Yingying XIE, Bin DENG, Yuzhi ZHANG, Xiaoxu WANG, Linfeng ZHANG. Intelligent R&D of battery design automation in the era of artificial intelligence[J]. Energy Storage Science and Technology, 2024, 13(9): 3182-3197.
1 | 魏佳, 严菁. 电力系统脱碳新动能电化学储能技术创新趋势报告[R]. 北京: 绿色和平, 2022. |
2 | 皮秀. 动力电池强势依旧,电池材料大有可为——动力电池产业链全景图[R]. 深圳: 平安证券研究所, 2023. |
3 | 张林峰, 孙伟杰, 李鑫宇, 等. 科学智能(AI4S)全球发展观察与展望2023版[R]. 北京: 北京科学智能研究院, 北京深势科技有限公司, 络绎科学, 2023. |
4 | Synopsys. What is EDA (Electronic Design Automation)?[EB/OL]. [2024-07-25]. https://www.synopsys.com/glossary/what-is-electronic-design-automation.html. |
5 | GREENWOOD M, WROGEMANN J M, SCHMUCH R, et al. The battery component readiness level (BC-RL) framework: A technology-specific development framework[J]. Journal of Power Sources Advances, 2022, 14: 100089. DOI: 10.1016/j.powera. 2022.100089. |
6 | COOPER R G. Predevelopment activities determine new product success[J]. Industrial Marketing Management, 1988, 17(3): 237-247. DOI: 10.1016/0019-8501(88)90007-7. |
7 | GREWAL A, KATARIA H, DHAWAN I. Literature search for research planning and identification of research problem[J]. Indian Journal of Anaesthesia, 2016, 60(9): 635-639. DOI: 10.4103/0019-5049.190618. |
8 | KENDIG C E. What is proof of concept research and how does it generate epistemic and ethical categories for future scientific practice?[J]. Science and Engineering Ethics, 2016, 22(3): 735-753. DOI: 10.1007/s11948-015-9654-0. |
9 | GRANT P S, GREENWOOD D, PARDIKAR K, et al. Roadmap on Li-ion battery manufacturing research[J]. Journal of Physics: Energy, 2022, 4(4): 042006. DOI: 10.1088/2515-7655/ac8e30. |
10 | XIAO J, SHI F F, GLOSSMANN T, et al. From laboratory innovations to materials manufacturing for lithium-based batteries[J]. Nature Energy, 2023, 8: 329-339. DOI: 10.1038/s41560-023-01221-y. |
11 | NÖLLE R, BELTROP K, HOLTSTIEGE F, et al. A reality check and tutorial on electrochemical characterization of battery cell materials: How to choose the appropriate cell setup[J]. Materials Today, 2020, 32: 131-146. DOI: 10.1016/j.mattod.2019.07.002. |
12 | MEUTZNER F, NESTLER T, ZSCHORNAK M, et al. Computational analysis and identification of battery materials[J]. Physical Sciences Reviews, 2019, 4(1). DOI: 10.1515/psr-2018-0044. |
13 | 杜雨, 王谟松, 张孜铭. AI for Science:人工智能驱动科学创新[M]. 北京:电子工业出版社, 2024. |
14 | LOMBARDO T, DUQUESNOY M, EL-BOUYSIDY H, et al. Artificial intelligence applied to battery research: Hype or reality?[J]. Chemical Reviews, 2022, 122(12): 10899-10969. DOI: 10.1021/acs.chemrev.1c00108. |
15 | HUBBARD K E, DUNBAR S D. Perceptions of scientific research literature and strategies for reading papers depend on academic career stage[J]. PLoS One, 2017, 12(12): e0189753. DOI: 10.1371/journal.pone.0189753. |
16 | HALEVI G, MOED H, BAR-ILAN J. Suitability of Google Scholar as a source of scientific information and as a source of data for scientific evaluation—Review of the literature[J]. Journal of Informetrics, 2017, 11(3): 823-834. DOI: 10.1016/j.joi.2017.06.005. |
17 | BIRKLE C, PENDLEBURY D A, SCHNELL J, et al. Web of Science as a data source for research on scientific and scholarly activity[J]. Quantitative Science Studies, 2020, 1(1): 363-376. DOI: 10.1162/qss_a_00018. |
18 | Google Scholar. Battery[EB/OL]. [2024-07-20]. https://scholar.google.com/scholar?hl=zh-CN&as_sdt=0%2C5&q=battery&btnG=. |
19 | THISSANDIER F, BARON N. Status of the battery patents 2018[R]. France: KnowMade, 2018. |
20 | POHL H, MARKLUND M. Battery research and innovation—a study of patents and papers[J]. World Electric Vehicle Journal, 2024, 15(5): 193. DOI: 10.3390/wevj15050193. |
21 | GABRIELSON S W. SciFinder[J]. Journal of the Medical Library Association, 2018, 106(4): 588. DOI: 10.5195/jmla.2018.515. |
22 | GOODMAN J. Computer software review: Reaxys[J]. Journal of Chemical Information and Modeling, 2009, 49(12): 2897-2898. DOI: 10.1021/ci900437n. |
23 | ROUMELIOTIS K I, TSELIKAS N D. ChatGPT and open-AI models: A preliminary review[J]. Future Internet, 2023, 15(6): 192. DOI: 10.3390/fi15060192. |
24 | WU T Y, HE S Z, LIU J P, et al. A brief overview of ChatGPT: The history, status quo and potential future development[J]. IEEE/CAA Journal of Automatica Sinica, 2023, 10(5): 1122-1136. DOI: 10.1109/JAS.2023.123618. |
25 | DAGDELEN J, DUNN A, LEE S, et al. Structured information extraction from scientific text with large language models[J]. Nature Communications, 2024, 15: 1418. DOI: 10.1038/s41467-024-45563-x. |
26 | NGIAM J, KHOSLA A, KIM M, et al. Multimodal deep learning[C]// Proceedings of the 28th international conference on machine learning (ICML-11). 2011: 689-696. |
27 | CAI H X, CAI X C, YANG S W, et al. Uni-SMART: Universal science multimodal analysis and research transformer[EB/OL]. [2024-05-01]. https://arxiv.org/abs/2403.10301v2. |
28 | CAI H X, CAI X C, CHANG J H, et al. SciAssess: Benchmarking LLM proficiency in scientific literature analysis[EB/OL]. [2024-05-01]. https://arxiv.org/abs/2403.01976v4. |
29 | Hugging Face. Paper: Uni-SMART[EB/OL]. [2024-07-20]. https://huggingface.co/posts/akhaliq/187303171643734. |
30 | DE LA TORRE-LÓPEZ J, RAMÍREZ A, ROMERO J R. Artificial intelligence to automate the systematic review of scientific literature[J]. Computing, 2023, 105(10): 2171-2194. DOI: 10.1007/s00607-023-01181-x. |
31 | PANDA S. Enhancing PDF interaction for a more engaging user experience in library: Introducing ChatPDF[J]. IP Indian Journal of Library Science and Information Technology, 2023, 8(1): 20-25. DOI: 10.18231/j.ijlsit.2023.004. |
32 | Anthropic. Meet claude[EB/OL]. [2023-11-30]. https://www.anthropic.com/claude. |
33 | ACHIAM J, ADLER S, AGARWAL S, et al. Gpt-4 technical report[J]. arXiv:2303.08774. https://doi.org/10.48550/arXiv.2303.08774. |
34 | Uni-Finder. Uni-Finder[EB/OL]. [2024-08-24]. https://uni-finder.dp.tech/. |
35 | 李佳林, 丁秀金, 赵江宇. 化学电池行业深度报告:缘起,挑战与机遇[R]. 势乘资本, 光锥智能, 2022. |
36 | ENG A Y S, SONI C B, LUM Y, et al. Theory-guided experimental design in battery materials research[J]. Science Advances, 2022, 8(19): eabm2422. DOI: 10.1126/sciadv.abm2422. |
37 | ZHANG L F, HAN J Q, WANG H, et al. Deep potential molecular dynamics: A scalable model with the accuracy of quantum mechanics[J]. Physical Review Letters, 2018, 120(14): 143001. DOI: 10.1103/PhysRevLett.120.143001. |
38 | HAN J Q, ZHANG L F, CAR R, et al. Deep potential: A general representation of a many-body potential energy surface[EB/OL]. 2017: 1707.01478.[2024-08-24]. https://arxiv.org/abs/1707.01478v2. |
39 | WEN T Q, ZHANG L F, WANG H, et al. Deep potentials for materials science[J]. Materials Futures, 2022, 1(2): 022601. DOI: 10.1088/2752-5724/ac681d. |
40 | CHEN Y X, ZHANG L F, WANG H, et al. DeePKS: A comprehensive data-driven approach toward chemically accurate density functional theory[J]. J Chem Theory Comput, 2021, 17(1): 170-181. DOI: 10.1021/acs.jctc.0c00872. |
41 | LI W F, OU Q, CHEN Y X, et al. DeePKS + ABACUS as a bridge between expensive quantum mechanical models and machine learning potentials[J]. The Journal of Physical Chemistry A, 2022, 126(49): 9154-9164. DOI: 10.1021/acs.jpca.2c05000. |
42 | WANG H, ZHANG L F, HAN J Q, et al. DeePMD-kit: A deep learning package for many-body potential energy representation and molecular dynamics[J]. Computer Physics Communications, 2018, 228: 178-184. DOI: 10.1016/j.cpc.2018.03.016. |
43 | LU D H, WANG H, CHEN M H, et al. 86 PFLOPS deep potential molecular dynamics simulation of 100 million atoms with ab initio accuracy[J]. Computer Physics Communications, 2021, 259: 107624. DOI: 10.1016/j.cpc.2020.107624. |
44 | ZHANG L F, HAN J Q, WANG H, et al. DeePCG: Constructing coarse-grained models via deep neural networks[J]. The Journal of Chemical Physics, 2018, 149(3): 034101. DOI: 10.1063/1.5027645. |
45 | FU F J, WANG X X, ZHANG L F, et al. Unraveling the atomic-scale mechanism of phase transformations and structural evolutions during (de)lithiation in Si anodes[J]. Advanced Functional Materials, 2023, 33(37): 2303936. DOI: 10.1002/adfm.202303936. |
46 | REN F C, WU Y Q, ZUO W H, et al. Visualizing the SEI formation between lithium metal and solid-state electrolyte[J]. Energy & Environmental Science, 2024, 17(8): 2743-2752. DOI: 10.1039/D3EE03536K. |
47 | GUPTA S, YANG X C, CEDER G. What dictates soft clay-like lithium superionic conductor formation from rigid salts mixture[J]. Nature Communications, 2023, 14(1): 6884. DOI: 10.1038/s41467-023-42538-2. |
48 | HU T P, DAI F Z, ZHOU G B, et al. Unraveling the dynamic correlations between transition metal migration and the oxygen dimer formation in the highly delithiated LixCoO2 cathode[J]. The Journal of Physical Chemistry Letters, 2023, 14(15): 3677-3684. DOI: 10.1021/acs.jpclett.3c00506. |
49 | HU T P, TIAN J X, DAI F Z, et al. Impact of the local environment on Li ion transport in inorganic components of solid electrolyte interphases[J]. Journal of the American Chemical Society, 2023, 145(2): 1327-1333. DOI: 10.1021/jacs.2c11521. |
50 | WANG F, SUN Y, CHENG J. Switching of redox levels leads to high reductive stability in water-in-salt electrolytes[J]. Journal of the American Chemical Society, 2023, 145(7): 4056-4064. DOI: 10.1021/jacs.2c11793. |
51 | ZHANG D, BI H R, DAI F Z, et al. DPA-1: Pretraining of attention-based deep potential model for molecular simulation[EB/OL]. [2024-07-02]. https://arxiv.org/abs/2208.08236v4. |
52 | ZHANG D, LIU X Z J, ZHANG X Y, et al. DPA-2: Towards a universal large atomic model for molecular and material simulation[J]. arXiv:2312.15492. https://doi.org/10.48550/arXiv. 2312.15492. |
53 | ZHOU G, GAO Z F, DING Q K, et al. Uni-mol: A universal 3d molecular representation learning framework[C]// International Conference on Learning Representations. ICLR, 2023. |
54 | JI X H, WANG Z, GAO Z F, et al. Uni-Mol2: Exploring molecular pretraining model at scale[EB/OL]. [2024-07-02]. https://arxiv.org/abs/2406.14969v2. |
55 | ZENG B S, CHEN S A, LIU X X, et al. Uni-ELF: A multi-level representation learning framework for electrolyte formulation design[EB/OL]. [2024-07-02]. https://arxiv.org/abs/2407. 06152v1. |
56 | SEVERSON K A, ATTIA P M, JIN N, et al. Data-driven prediction of battery cycle life before capacity degradation[J]. Nature Energy, 2019, 4: 383-391. DOI: 10.1038/s41560-019-0356-8. |
57 | MA G J, XU S P, JIANG B B, et al. Real-time personalized health status prediction of lithium-ion batteries using deep transfer learning[J]. Energy & Environmental Science, 2022, 15(10): 4083-4094. DOI: 10.1039/D2EE01676A. |
58 | WANG R Y, GUO M Y, GAO Y X, et al. A pre-trained deep potential model for sulfide solid electrolytes with broad coverage and high accuracy[EB/OL]. 2024: 2406.18263.[2024-08-24]. https://arxiv.org/abs/2406.18263v2. |
59 | Bohrium[EB/OL]. [2024-07-20]. https://bohrium.dp.tech/apps. |
60 | KLUYVER T, RAGAN-KELLEY B, PÉREZ F, et al. Jupyter Notebooks-A publishing format for reproducible computational workflows[M]// Positioning and power in academic publishing: Players, agents and agendas. IOS press, 2016: 87-90. |
61 | LIU X, HAN Y B, LI Z Y, et al. Dflow, a Python framework for constructing cloud-native AI-for-Science workflows[EB/OL]. 2024: [2024-07-02]. https://arxiv.org/abs/2404.18392v1. |
62 | YAKUTOVICH A V, EIMRE K, SCHÜTT O, et al. AiiDAlab-An ecosystem for developing, executing, and sharing scientific workflows[J]. Computational Materials Science, 2021, 188: 110165. DOI: 10.1016/j.commatsci.2020.110165. |
63 | Hugging Face. Hugging Face Spaces[EB/OL]. [2024-07-20]. https://huggingface.co/spaces. |
64 | Piloteye[EB/OL]. [2024-07-20]. https://bohrium.dp.tech/org/piloteye. |
65 | JOKAR A, RAJABLOO B, DÉSILETS M, et al. Review of simplified pseudo-two-dimensional models of lithium-ion batteries[J]. Journal of Power Sources, 2016, 327: 44-55. DOI: 10.1016/j.jpowsour.2016.07.036. |
66 | HAN X B, OUYANG M G, LU L G, et al. A comparative study of commercial lithium ion battery cycle life in electrical vehicle: Aging mechanism identification[J]. Journal of Power Sources, 2014, 251: 38-54. DOI: 10.1016/j.jpowsour.2013.11.029. |
67 | JIA X Y, ZHANG C P, WANG L Y, et al. The degradation characteristics and mechanism of Li[Ni0.5Co0.2Mn0.3]O2 batteries at different temperatures and discharge current rates[J]. Journal of the Electrochemical Society, 2020, 167(2): 020503. DOI: 10.1149/1945-7111/ab61e9. |
68 | SATYAVANI T V S L, SRINIVAS KUMAR A, SUBBA RAO P S V. Methods of synthesis and performance improvement of lithium iron phosphate for high rate Li-ion batteries: A review[J]. Engineering Science and Technology, an International Journal, 2016, 19(1): 178-188. DOI: 10.1016/j.jestch.2015.06.002. |
69 | BREIMAN L. Random forests[J]. Machine Learning, 2001, 45: 5-32. DOI: 10.1023/A:1010933404324. |
70 | FRIEDMAN J H. Greedy function approximation: A gradient boosting machine[J]. The Annals of Statistics, 2001, 29(5): 1189-1232. DOI: 10.1214/aos/1013203451. |
71 | SZYMANSKI N J, BARTEL C J. Computationally guided synthesis of battery materials[J]. ACS Energy Letters, 2024, 9(6): 2902-2911. DOI: 10.1021/acsenergylett.4c00821. |
72 | GIEHL C, SCHÄFFLER M, SEGETS D, et. al. Material characterization for battery cell manufacturing along the process chain[R/OL]. Germany: Anton Paar[2024-07-20]. https://www.theengineer.co.uk/media/qxankjlh/material-characterization-for-battery-cell-manufacturing.pdf |
73 | KISSINGER P T, HEINEMAN W R. Cyclic voltammetry[J]. Journal of Chemical Education, 1983, 60(9): 702. DOI: 10.1021/ed060p702. |
74 | DEES D W, KAWAUCHI S, ABRAHAM D P, et al. Analysis of the galvanostatic intermittent titration technique (GITT) as applied to a lithium-ion porous electrode[J]. Journal of Power Sources, 2009, 189(1): 263-268. DOI: 10.1016/j.jpowsour.2008.09.045. |
75 | CHANG B Y, PARK S M. Electrochemical impedance spectroscopy[J]. Annual Review of Analytical Chemistry, 2010, 3: 207-229. DOI: 10.1146/annurev.anchem.012809.102211. |
76 | EPP J. X-ray diffraction (XRD) techniques for materials characterization[M]// Materials Characterization Using Nondestructive Evaluation (NDE) Methods. Amsterdam: Elsevier, 2016: 81-124. DOI: 10.1016/b978-0-08-100040-3.00004-3. |
77 | ŚWIATOWSKA J, LAIR V, PEREIRA-NABAIS C, et al. XPS, XRD and SEM characterization of a thin ceria layer deposited onto graphite electrode for application in lithium-ion batteries[J]. Applied Surface Science, 2011, 257(21): 9110-9119. DOI: 10.1016/j.apsusc.2011.05.108. |
78 | HUANG R, IKUHARA Y. STEM characterization for lithium-ion battery cathode materials[J]. Current Opinion in Solid State and Materials Science, 2012, 16(1): 31-38. DOI: 10.1016/j.cossms. 2011.08.002. |
79 | ZHANG Z, FOUCHARD D, REA J R. Differential scanning calorimetry material studies: Implications for the safety of lithium-ion cells[J]. Journal of Power Sources, 1998, 70(1): 16-20. DOI: 10.1016/S0378-7753(97)02611-6. |
80 | VELUCHAMY A, DOH C H, KIM D H, et al. Thermal analysis of LixCoO2 cathode material of lithium ion battery[J]. Journal of Power Sources, 2009, 189(1): 855-858. DOI: 10.1016/j.jpowsour. 2008.07.090. |
81 | RAHMANIAN F, VOGLER M, WÖLKE C, et al. Conductivity experiments for electrolyte formulations and their automated analysis[J]. Scientific Data, 2023, 10(1): 43. DOI: 10.1038/s41597-023-01936-3. |
82 | HEMKER K J, SHARPE W N Jr. Microscale characterization of mechanical properties[J]. Annual Review of Materials Research, 2007, 37: 93-126. DOI: 10.1146/annurev.matsci.36.062705.134551. |
83 | JAGUEMONT J, BARDÉ F. A critical review of lithium-ion battery safety testing and standards[J]. Applied Thermal Engineering, 2023, 231: 121014. DOI: 10.1016/j.applthermaleng.2023.121014. |
84 | SU M, ZHANG H T, SCHAWINSKI K, et al. Generative adversarial networks as a tool to recover structural information from cryo-electron microscopy data[EB/OL]. BioRxiv, 2018: 256792. [2024-07-02]. https://www.biorxiv.org/content/10.1101/256792v1. |
85 | PRATT H, WILLIAMS B, COENEN F, et al. FCNN: Fourier convolutional neural networks[C]// Machine Learning and Knowledge Discovery in Databases: European Conference, ECML PKDD 2017. Springer International Publishing, 2017: 786-798. |
86 | RONNEBERGER O, FISCHER P, BROX T. U-net: Convolutional networks for biomedical image segmentation[M]// Lecture Notes in Computer Science. Cham: Springer International Publishing, 2015: 234-241. DOI: 10.1007/978-3-319-24574-4_28. |
87 | BOTIFOLL M, PINTO-HUGUET I, ARBIOL J. Machine learning in electron microscopy for advanced nanocharacterization: Current developments, available tools and future outlook[J]. Nanoscale Horizons, 2022, 7(12): 1427-1477. DOI: 10.1039/d2nh00377e. |
88 | BALS J, EPPLE M. Artificial scanning electron microscopy images created by generative adversarial networks from simulated particle assemblies[J]. Advanced Intelligent Systems, 2023, 5(7): 2300004. DOI: 10.1002/aisy.202300004. |
89 | TURETSKYY A. Data analytics in battery production systems[D]. Dissertation, Braunschweig: Technische Universität Braunschweig, 2022. |
90 | GUO F, HUANG G S, ZHANG W C, et al. State of health estimation method for lithium batteries based on electrochemical impedance spectroscopy and pseudo-image feature extraction[J]. Measurement, 2023, 220: 113412. DOI: 10.1016/j.measurement. 2023.113412. |
91 | KOZA J R. Genetic programming as a means for programming computers by natural selection[J]. Statistics and Computing, 1994, 4(2): 87-112. DOI: 10.1007/BF00175355. |
92 | CHEN T Q, GUESTRIN C. XGBoost: A scalable tree boosting system[C]// Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM, 2016: 785-794. DOI: 10.1145/2939672.2939785. |
93 | WIND J, ULVESTAD A, ABDELHAMID M, et al. Cellpy-An open-source library for processing andanalysis of battery testing data[J]. Journal of Open Source Software, 2024, 9(97): 6236. DOI: 10.21105/joss.06236. |
94 | MURBACH M, GERWE B, DAWSON-ELLI N, et al. Impedance.py: A Python package for electrochemical impedance analysis[J]. Journal of Open Source Software, 2020, 5(52): 2349. DOI: 10.21105/joss.02349. |
95 | HASSINI M, REDONDO-IGLESIAS E, VENET P. Lithium-ion battery data: From production to prediction[J]. Batteries, 2023, 9(7): 385. DOI: 10.3390/batteries9070385. |
[1] | 陈星光, 沈逸凡, 邵裕新, 郑岳久, 孙涛, 来鑫, 沈凯, 韩雪冰. 面向实车应用的磷酸铁锂电池容量辨识及特异性优化方法研究[J]. 储能科学与技术, 2024, 13(9): 2963-2971. |
[2] | 孙中麟, 李嘉波, 田迪, 王志璇, 邢晓静. 基于COA-LSTM和VMD的锂离子电池剩余寿命预测[J]. 储能科学与技术, 2024, 13(9): 3254-3265. |
[3] | 袁誉杭, 高宇辰, 张俊东, 高岩斌, 王超珑, 陈翔, 张强. 大语言模型在储能研究中的应用[J]. 储能科学与技术, 2024, 13(9): 2907-2919. |
[4] | 陆继忠, 彭思敏, 李晓宇. 基于多特征量分析和LSTM-XGBoost模型的锂离子电池SOH估计方法[J]. 储能科学与技术, 2024, 13(9): 2972-2982. |
[5] | 胡雪峰, 常先雷, 刘肖肖, 徐威, 张文彬. 适用于宽温度范围的锂离子电池SOC估计方法[J]. 储能科学与技术, 2024, 13(9): 2983-2994. |
[6] | 沈思远, 刘亚坤, 罗栋煌, 李雨珺, 郝伟. 储能锂离子电池模组暂态过电压防护设计与电路研发[J]. 储能科学与技术, 2024, 13(9): 3277-3286. |
[7] | 陈媛, 章思源, 蔡宇晶, 黄小贺, 刘炎忠. 融合多项式特征扩展与CNN-Transformer模型的锂电池SOH估计[J]. 储能科学与技术, 2024, 13(9): 2995-3005. |
[8] | 樊金保, 李娜, 吴宜琨, 贺春旺, 杨乐, 宋维力, 陈浩森. 能源电池单体层级数字孪生技术[J]. 储能科学与技术, 2024, 13(9): 3112-3133. |
[9] | 李亚捷, 王依平, 陈斌, 林海龙, 张更, 施思齐. 机器学习辅助相场模拟预测锂离子输运参数对电池枝晶最大生长高度和空间利用率的影响[J]. 储能科学与技术, 2024, 13(9): 2864-2870. |
[10] | 黎耀康, 杨海东, 徐康康, 蓝昭宇, 章润楠. 基于加权UMAP和改进BLS的锂电池温度预测[J]. 储能科学与技术, 2024, 13(9): 3006-3015. |
[11] | 邢瑞鹤, 翁素婷, 李叶晶, 张佳怡, 张浩, 王雪锋. AI辅助电池材料表征与数据分析[J]. 储能科学与技术, 2024, 13(9): 2839-2863. |
[12] | 何宁, 杨芳芳. 考虑能量和温度特征的锂离子电池早期寿命预测[J]. 储能科学与技术, 2024, 13(9): 3016-3029. |
[13] | 管鸿盛, 钱诚, 孙博, 任羿. 贫数据条件下锂离子电池容量退化轨迹预测方法[J]. 储能科学与技术, 2024, 13(9): 3084-3093. |
[14] | 焦君宇, 张全權, 陈宁波, 王冀钰, 芦秋迪, 丁浩浩, 彭鹏, 宋孝河, 张帆, 郑家新. 电池大数据智能分析平台的研发与应用[J]. 储能科学与技术, 2024, 13(9): 3198-3213. |
[15] | 刘定宏, 董文楷, 李召阳, 张红烛, 齐昕. 基于RUN-GRU-attention模型的实车动力电池健康状态估计方法[J]. 储能科学与技术, 2024, 13(9): 3042-3058. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||