储能科学与技术 ›› 2024, Vol. 13 ›› Issue (9): 3182-3197.doi: 10.19799/j.cnki.2095-4239.2024.0698

• AI辅助先进电池设计与应用专刊 • 上一篇    下一篇

AI for Science时代下的电池平台化智能研发

谢莹莹1(), 邓斌1, 张与之1, 王晓旭1(), 张林峰1,2   

  1. 1.北京深势科技有限公司,北京 100080
    2.北京科学智能研究院,北京 100080
  • 收稿日期:2024-07-10 修回日期:2024-08-28 出版日期:2024-09-28 发布日期:2024-09-20
  • 通讯作者: 王晓旭 E-mail:xieyy@dp.tech;wangxx@dp.tech
  • 作者简介:谢莹莹(1997—),女,学士,主要从事BDA平台产品研发,E-mail:xieyy@dp.tech

Intelligent R&D of battery design automation in the era of artificial intelligence

Yingying XIE1(), Bin DENG1, Yuzhi ZHANG1, Xiaoxu WANG1(), Linfeng ZHANG1,2   

  1. 1.Beijing DP Technology Co. , Ltd, Beijing 100080, China
    2.AI for Science Institute, Beijing 100080, China
  • Received:2024-07-10 Revised:2024-08-28 Online:2024-09-28 Published:2024-09-20
  • Contact: Xiaoxu WANG E-mail:xieyy@dp.tech;wangxx@dp.tech

摘要:

在AI for Science时代,电池设计自动化智能研发(battery design automation,BDA)平台通过整合先进的人工智能技术,为电池研发领域带来了革命性进展。BDA平台覆盖了文献调研、实验设计、合成制备、表征测试和分析优化这五个电池研发的关键环节,利用机器学习、多尺度建模、预训练模型等先进算法,结合软件工程开发用户交互友好的工具,加速从理论设计到实验验证的整个电池研发周期。通过自动化的实验设计、合成制备、表征测试和性能优化,BDA平台不仅提升了研发效率,还提高了电池设计的精确度和可靠性,推动了电池技术向更高能量密度、更长循环寿命和更低成本的方向发展。

关键词: AI for Science, 电池, 智能研发, 机器学习, BDA, 多尺度

Abstract:

In the era of artificial intelligence (AI) in science, the battery design automation (BDA) intelligent R&D platform has revolutionized battery R&D by integrating advanced AI technologies. The BDA platform covers five key aspects of battery R&D: Read, Design, Make, Test, and Analysis. It uses advanced algorithms, such as machine learning, multi-scale modeling, and pre-training models, combined with software engineering to develop user-friendly tools for accelerating the complete battery R&D cycle from theoretical design to experimental validation. Through synthesis and preparation, characterization testing, performance optimization, and automated experimental design, the BDA platform enhances R&D efficiency and improves the accuracy and reliability of battery design, which results in battery technology with higher energy density, longer cycle life, and lower costs.

Key words: artificial intelligence for science, battery, intelligent R&D, machine learning, battery design automation, multi-scale

中图分类号: