储能科学与技术 ›› 2025, Vol. 14 ›› Issue (1): 388-405.doi: 10.19799/j.cnki.2095-4239.2024.1215
郝峻丰1(), 岑官骏1, 乔荣涵1, 朱璟1, 孙蔷馥1, 张新新1, 田孟羽2, 金周2, 詹元杰2, 闫勇2, 贲留斌1,2, 俞海龙1, 刘燕燕1, 周洪3, 黄学杰1,2(
)
收稿日期:
2024-12-20
修回日期:
2024-12-24
出版日期:
2025-01-28
发布日期:
2025-02-25
通讯作者:
黄学杰
E-mail:haojunfeng21@mails.ucas.ac.cn;xjhuang@iphy. ac.cn
作者简介:
郝峻丰(1999—),男,博士研究生,研究方向为锂离子电池,E-mail:haojunfeng21@mails.ucas.ac.cn;
Junfeng HAO1(), Guanjun CEN1, Ronghan QIAO1, Jing ZHU1, Qiangfu SUN1, Xinxin ZHANG1, Mengyu TIAN2, Zhou JIN2, Yuanjie ZHAN2, Yong YAN2, Liubin BEN1,2, Hailong YU1, Yanyan LIU1, Hong ZHOU3, Xuejie HUANG1,2(
)
Received:
2024-12-20
Revised:
2024-12-24
Online:
2025-01-28
Published:
2025-02-25
Contact:
Xuejie HUANG
E-mail:haojunfeng21@mails.ucas.ac.cn;xjhuang@iphy. ac.cn
摘要:
本文是一篇近两个月的锂电池文献评述,以“lithium”和“batter”为关键词检索了Web of Science从2024年10月1日至2024年11月30日上线的锂电池研究论文,共有6602篇,选择其中100篇加以评论。正极材料方面主要研究了高镍三元的包覆和掺杂改性,以及其在高电压下所发生的表面和体相的结构演变。合金化储锂负极材料的研究侧重于复合电极结构设计和各类黏结剂的开发,以缓解循环过程中负极材料的体积变化,维持电极完整性。固态电解质的研究主要包括对现有固态电解质的合成、掺杂、结构设计、稳定性和相关性能研究以及对新型固态电解质的探索。其他电解液和添加剂的研究则主要包括不同电解质和溶剂对各类电池材料体系适配的研究,以及对新的功能性添加剂的探索。固态电池方向更多关注于复合正极设计、界面改性和影响锂枝晶生长的因素,同时出现了更多关于固态锂硫电池的研究论文。关于电池产热和气体成分、失效机制、热失控、界面稳定性的电池模型、表征和分析论文也有多篇。理论模拟工作多是关于无机固体电解质中离子输运的研究。
中图分类号:
郝峻丰, 岑官骏, 乔荣涵, 朱璟, 孙蔷馥, 张新新, 田孟羽, 金周, 詹元杰, 闫勇, 贲留斌, 俞海龙, 刘燕燕, 周洪, 黄学杰. 锂电池百篇论文点评(2024.10.1—2024.11.30)[J]. 储能科学与技术, 2025, 14(1): 388-405.
Junfeng HAO, Guanjun CEN, Ronghan QIAO, Jing ZHU, Qiangfu SUN, Xinxin ZHANG, Mengyu TIAN, Zhou JIN, Yuanjie ZHAN, Yong YAN, Liubin BEN, Hailong YU, Yanyan LIU, Hong ZHOU, Xuejie HUANG. Reviews of selected 100 recent papers for lithium batteries (Oct. 1, 2024 to Nov. 30, 2024)[J]. Energy Storage Science and Technology, 2025, 14(1): 388-405.
1 | CHEN H, YUAN H H, DAI Z Q, et al. Surface gradient Ni-rich cathode for Li-ion batteries[J]. Advanced Materials, 2024, 36(33): 2401052. DOI: 10.1002/adma.202401052. |
2 | CHEN J H, FENG S Y, DENG J H, et al. Application of precursor with ultra-small particle size and uniform particle distribution for ultra-high nickel single-crystal cathode materials by coprecipitation method[J]. Journal of Colloid and Interface Science, 2025, 679: 798-810. DOI: 10.1016/j.jcis.2024.10.025. |
3 | KONG N J, HA J H, HWANG Y J, et al. Mitigating hydrogen gas evolution in high nickel cathodes using single-crystalline NCM particles[J]. Journal of Materials Chemistry A, 2024, 12(40): 27393-27399. DOI: 10.1039/D4TA04615C. |
4 | LI Z, YOU Y, LIU Y, et al. Analyzing the mechanism of performance improvement in LiNi0.8Co0.1Mn0.1O2 through coating with LiNbO3 fast ion conductor[J]. Ceramics International, 2024, 50(17): 30493-30503. DOI: 10.1016/j.ceramint.2024.05.347. |
5 | AN L J, SWALLOW J E N, CONG P X, et al. Distinguishing bulk redox from near-surface degradation in lithium nickel oxide cathodes[J]. Energy & Environmental Science, 2024, 17(21): 8379-8391. DOI: 10.1039/d4ee02398f. |
6 | KARGER L, KORNEYCHUK S, SICOLO S, et al. Decoupling substitution effects from point defects in layered Ni-rich oxide cathode materials for lithium-ion batteries[J]. Advanced Functional Materials, 2024, 34(41): 2402444. DOI: 10.1002/adfm. 202402444. |
7 | LIN L L, ZHANG L H, FU Z Q, et al. Unraveling mechanism for microstructure engineering toward high-capacity nickel-rich cathode materials[J]. Advanced Materials, 2024, 36(36): e2406175. DOI: 10.1002/adma.202406175. |
8 | LIU M L, YING Y R, LIU J W, et al. Catalytic strategies enabled rapid formation of homogeneous and mechanically robust inorganic-rich cathode electrolyte interface for high-rate and high-stability lithium-ion batteries[J]. Advanced Energy Materials, 2024: 2403696. DOI: 10.1002/aenm.202403696. |
9 | MA K H, HE Y T, ZHAO X Y, et al. Lithium-ion battery silicon Anodes: Surface engineering with novel additives for enhanced ion and electron transport[J]. Chemical Engineering Journal, 2024, 496: 153846. DOI: 10.1016/j.cej.2024.153846. |
10 | CAO L, CHU M J, LI Y, et al. In situ-constructed multifunctional composite anode with ultralong-life toward advanced lithium-metal batteries[J]. Advanced Materials, 2024, 36(41): e2406034. DOI: 10.1002/adma.202406034. |
11 | FANG C D, HUANG Y, SUN Y F, et al. Revealing and reconstructing the 3D Li-ion transportation network for superionic poly(ethylene) oxide conductor[J]. Nature Communications, 2024, 15(1): 6781. DOI: 10.1038/s41467-024-51191-2. |
12 | DUAN P H, YU J L, LIU Q S, et al. Dynamic anion enables self-healing single-ion conductor polymer electrolyte for lithium-metal batteries[J]. Advanced Functional Materials, 2024, 34(37): 2402065. DOI: 10.1002/adfm.202402065. |
13 | LI K, WANG J F, SHEN Q Y, et al. Interfacial design strategy for polymeric lithium metal batteries with superfast charge-transfer kinetics[J]. Advanced Energy Materials, 2024, 14(27): 2400956. DOI: 10.1002/aenm.202400956. |
14 | LYU W, FU H W, RAO A M, et al. Permeable void-free interface for all-solid-state alkali-ion polymer batteries[J]. Science Advances, 2024, 10(42): eadr9602. DOI: 10.1126/sciadv.adr9602. |
15 | LIU H, LIAO Y Q, LEUNG C, et al. Ring-opening polymerization reconfigures polyacrylonitrile network for ultra stable solid-state lithium metal batteries[J]. Advanced Energy Materials, 2024: 2402795. DOI: 10.1002/aenm.202402795. |
16 | AN H W, LI M L, LIU Q S, et al. Strong Lewis-acid coordinated PEO electrolyte achieves 4.8 V-class all-solid-state batteries over 580 Wh·kg-1[J]. Nature Communications, 2024, 15(1): 9150. DOI: 10.1038/s41467-024-53094-8. |
17 | BOARETTO N, MEABE L, LINDBERG S, et al. Hybrid ceramic polymer electrolytes enabling long cycling in practical 1 Ah-class high-voltage solid-state batteries with Li metal anode[J]. Advanced Functional Materials, 2024: 2404564. DOI: 10.1002/adfm.202404564. |
18 | FENG G, MA Q Y, LUO D, et al. Designing cooperative ion transport pathway in ultra-thin solid-state electrolytes toward practical lithium metal batteries[J]. Angewandte Chemie (International Ed), 2024: e202413306. DOI: 10.1002/anie. 202413306. |
19 | HE Y B, WANG C Y, ZHANG R, et al. A self-healing plastic ceramic electrolyte by an aprotic dynamic polymer network for lithium metal batteries[J]. Nature Communications, 2024, 15(1): 10015. DOI: 10.1038/s41467-024-53869-z. |
20 | MA Y T, QIU Y, YANG K, et al. Competitive Li-ion coordination for constructing a three-dimensional transport network to achieve ultra-high ionic conductivity of a composite solid-state electrolyte[J]. Energy & Environmental Science, 2024, 17(21): 8274-8283. DOI: 10.1039/D4EE03134B. |
21 | HE Y B, WANG C Y, LIN R Q, et al. A self-healing, flowable, yet solid electrolyte suppresses Li-metal morphological instabilities[J]. Advanced Materials, 2024, 36(49): e2406315. DOI: 10.1002/adma.202406315. |
22 | ZHANG N N, HE Q S, ZHANG L, et al. Homogeneous fluorine doping toward highly conductive and stable Li10GeP2S12 solid electrolyte for all-solid-state lithium batteries[J]. Advanced Materials, 2024: 2408903. DOI: 10.1002/adma.202408903. |
23 | LI D Y, YU D F, ZHANG G W, et al. High configuration entropy promises electrochemical stability of chloride electrolytes for high-energy, long-life all-solid-state batteries[J]. Angewandte Chemie (International Ed), 2024: e202419735. DOI: 10.1002/anie. 202419735. |
24 | SCHEIBER T, GADERMAIER B, FINŠGAR M, et al. Charge carrier dynamics of the mixed conducting interphase in all-solid-state batteries: Lithiated Li1.3Al0.3Ti1.7(PO4)3 as a case study[J]. Advanced Functional Materials, 2024, 34(45): 2404562. DOI: 10.1002/adfm.202404562. |
25 | LIU X X, HOU H Y, WANG Y X, et al. Building continuous Li-ion transport channels from cathode to anode in solid-state lithium-metal batteries[J]. Inorganic Chemistry Frontiers, 2024, 11(21): 7451-7463. DOI: 10.1039/D4QI01803F. |
26 | FENG W L, ZHAO Y F, XIA Y Y. Solid interfaces for the Garnet electrolytes[J]. Advanced Materials, 2024, 36(15): e2306111. DOI: 10.1002/adma.202306111. |
27 | CHEN L L, XIAO B W, CHEN W B, et al. Ultra-high rate performance of single-crystalline NMC cathodes enabled by a TEP-based electrolyte[J]. Nano Energy, 2024, 131: 110276. DOI: 10.1016/j.nanoen.2024.110276. |
28 | FENG X N, XIE Y C, WU Q, et al. Triple salts electrolyte for high cyclability and high capability in practical safe nickel-rich batteries[J]. Nano Energy, 2024, 132: 110357. DOI: 10.1016/j.nanoen.2024.110357. |
29 | [CHEN T L, LIU M T, FAN X Y, et al. Nonflammable sulfone-based electrolytes with mechanically and thermally stable interfaces enabling LiNi0.5Mn1.5O4 to operate at high temperature[J]. ACS Energy Letters, 2024, 9(11): 5452-5460. DOI: 10.1021/acsenergylett.4c02458. |
30 | QIN M S, ZENG Z Q, WU Q, et al. Microsolvating competition in Li+ solvation structure affording PC-based electrolyte with fast kinetics for lithium-ion batteries[J]. Advanced Functional Materials, 2024, 34(41): 2406357. DOI: 10.1002/adfm. 202406357. |
31 | WANG Y K, ZHAO Y T, ZHANG S, et al. Monofluorinated phosphate with unique P—F bond for nonflammable and long-life lithium-ion batteries[J]. Angewandte Chemie (International Ed), 2024, 63(52): e202412108. DOI: 10.1002/anie.202412108. |
32 | MA Z H, RUAN D G, WANG D Z, et al. Selective methylation of cyclic ether towards highly elastic solid electrolyte interphase for silicon-based anodes[J]. Angewandte Chemie (International Ed), 2024: e202414859. DOI: 10.1002/anie.202414859. |
33 | LU Z Y, YANG H J, SUN J M, et al. Conformational isomerism breaks the electrolyte solubility limit and stabilizes 4.9 V Ni-rich layered cathodes[J]. Nature Communications, 2024, 15(1): 9108. DOI: 10.1038/s41467-024-53570-1. |
34 | TAN S, BORODIN O, WANG N, et al. Synergistic anion and solvent-derived interphases enable lithium-ion batteries under extreme conditions[J]. Journal of the American Chemical Society, 2024, 146(44): 30104-30116. DOI: 10.1021/jacs.4c07806. |
35 | ADAMO J B, MANTHIRAM A. Electrolyte strategies to minimize surface reactivity for improved reversibility of the H2-H3 phase transition[J]. Journal of Materials Chemistry A, 2024, 12(42): 28818-28829. DOI: 10.1039/D4TA05216A. |
36 | CORA S, VAUGHEY J T, SA N Y. Binary cation matrix electrolyte and its effect on solid electrolyte interphase suppression and evolution of Si anode[J]. ACS Applied Materials & Interfaces, 2024, 16(30): 39277-39286. DOI: 10.1021/acsami.4c05194. |
37 | HE W, YEDDALA M, RYNEARSON L, et al. Electrolyte design for NMC811||SiOx-gr lithium-ion batteries with excellent low-temperature and high-rate performance[J]. Journal of the Electrochemical Society, 2024, 171(8): 080507. DOI: 10.1149/1945-7111/ad6934. |
38 | ARIFIADI A, DEMELASH F, BRAKE T, et al. Elucidating the limit of lithium difluorophosphate electrolyte additive for high-voltage Li/Mn-rich layered oxide || graphite Li ion batteries[J]. Energy & Environmental Materials, 2024: 12835. DOI: 10.1002/eem2.12835. |
39 | CUI Z H, LIU C, MANTHIRAM A. Enabling stable operation of lithium-ion batteries under fast-operating conditions by tuning the electrolyte chemistry[J]. Advanced Materials, 2024: 2409272. DOI: 10.1002/adma.202409272. |
40 | PFEIFFER F, GRIGGIO A, WEILING M, et al. Tracing the cross-talk phenomenon of vinylethylene carbonate to unveil its counterintuitive influence as an electrolyte additive on high-voltage lithium-ion batteries[J]. Advanced Energy Materials, 2024, 14(39): 2402187. DOI: 10.1002/aenm.202402187. |
41 | WÖLKE C, BENAYAD A, LAI T L, et al. Single versus blended electrolyte additives: Impact of a sulfur-based electrolyte additive on electrode cross-talk and electrochemical performance of LiNiO2||graphite cells[J]. Advanced Energy Materials, 2024: 2402152. DOI: 10.1002/aenm.202402152. |
42 | LI Y N, WEN B, LI N, et al. Electrolyte engineering to construct robust interphase with high ionic conductivity for wide temperature range lithium metal batteries[J]. Angewandte Chemie (International Ed), 2024: e202414636. DOI: 10.1002/anie.202414636. |
43 | CUI L F, ZHANG S, JU J W, et al. A cathode homogenization strategy for enabling long-cycle-life all-solid-state lithium batteries[J]. Nature Energy, 2024, 9: 1084-1094. DOI: 10.1038/s41560-024-01596-6. |
44 | HWANG T, BAE J H, LEE S R, et al. Oxygen substitution to enhance chemo-mechanical stability at the cathode-sulfide electrolyte interface in all-solid-state batteries[J]. ACS Nano, 2024, 18(34): 23320-23330. DOI: 10.1021/acsnano.4c06345. |
45 | KONG X K, GU R, JIN Z Z, et al. Maximizing interface stability in all-solid-state lithium batteries through entropy stabilization and fast kinetics[J]. Nature Communications, 2024, 15(1): 7247. DOI: 10.1038/s41467-024-51123-0. |
46 | KWON P J, JUAREZ-YESCAS C, JEONG H, et al. Chemo-electrochemical evolution of cathode-solid electrolyte interface in all-solid-state batteries[J]. ACS Energy Letters, 2024, 9(10): 4746-4752. DOI: 10.1021/acsenergylett.4c02062. |
47 | JIANG Y, WU X, LU G Z, et al. High-areal-capacity all-solid-state lithium batteries enabled by electronically conductive Li-deficient LiNiO2 cathode[J]. ACS Energy Letters, 2024, 9(11): 5529-5538. DOI: 10.1021/acsenergylett.4c01457. |
48 | HONG S B, JANG Y R, KIM H, et al. Wet-processable binder in composite cathode for high energy density all-solid-state lithium batteries[J]. Advanced Energy Materials, 2024, 14(35): 2400802. DOI: 10.1002/aenm.202400802. |
49 | KIM Y J, HOANG T D, HAN S C, et al. Exploring optimal cathode composite design for high-performance all-solid-state batteries[J]. Energy Storage Materials, 2024, 71: 103607. DOI: 10.1016/j.ensm.2024.103607. |
50 | MEI P, ZHANG Y, AI B, et al. Versatile peroxide route-based kinetics-controlled coating method to construct uniform alkali metal-containing fast ionic conductor nanoshells[J]. Journal of the American Chemical Society, 2024, 146(42): 28677-28684. DOI: 10.1021/jacs.4c04519. |
51 | LI C, LIN Y, LIU J, et al. Liquid-phase preparation of low-tortuosity composite cathode for high active material content all-solid-state lithium batteries[J]. Advanced Energy Materials, 2024, 14(31): 2400985. DOI: 10.1002/aenm.202400985. |
52 | KIM S, KIM M, KU M J, et al. Coating robust layers on Ni-rich cathode active materials while suppressing cation mixing for all-solid-state lithium-ion batteries[J]. ACS Nano, 2024, 18(36): 25096-25106. DOI: 10.1021/acsnano.4c06720. |
53 | LIU Y C, LU Y, ZHANG Z L, et al. High-areal-capacity and long-life sulfide-based all-solid-state lithium battery achieved by regulating surface-to-bulk oxygen activity[J]. Journal of Energy Chemistry, 2025, 101: 795-807. DOI: 10.1016/j.jechem. 2024. 10.022. |
54 | LIU H, WANG Y, CHEN L Q, et al. High-capacity, long-life sulfide all-solid-state batteries with single-crystal Ni-rich layered oxide cathodes[J]. Advanced Functional Materials, 2024, 34(26): 2315701. DOI: 10.1002/adfm.202315701. |
55 | CHEN Y, GAO X, ZHEN Z, et al. The construction of multifunctional solid electrolyte interlayers for stabilizing Li6PS5Cl-based all-solid-state lithium metal batteries[J]. Energy & Environmental Science, 2024, 17(23): 9288-9302. DOI: 10.1039/D4EE03289F. |
56 | CHEN S W, CAO Q B, TANG B, et al. Chemomechanical pairing of alloy anodes and solid-state electrolytes[J]. ACS Energy Letters, 2024, 9(11): 5373-5382. DOI: 10.1021/acsenergylett.4c01983. |
57 | WANG Z X, LU Y, ZHAO C Z, et al. Suppressing Li voids in all-solid-state lithium metal batteries through Li diffusion regulation[J]. Joule, 2024, 8(10): 2794-2810. DOI: 10.1016/j.joule. 2024. 07.007. |
58 | LIU H, LI D B, DONG C X, et al. Generalized interphase design for stabilized Li/inorganic electrolyte interfaces[J]. Advanced Energy Materials, 2024, 14(38): 2402064. DOI: 10.1002/aenm. 202402064. |
59 | WANG Z Y, ZHAO C Z, YAO N, et al. The regulation of solid electrolyte interphase on composite lithium anodes in solid-state batteries[J]. Angewandte Chemie (International Ed), 2024: e202414524. DOI: 10.1002/anie.202414524. |
60 | WU X, PAN H, ZHANG M H, et al. Integrating lithium sulfide as a single ionic conductor interphase for stable all-solid-state lithium-sulfur batteries[J]. Advanced Science, 2024, 11(25): e2308604. DOI: 10.1002/advs.202308604. |
61 | GÖTZ R, PUGACHEVA E, AHALIABADEH Z, et al. Characterization of the lithium/solid electrolyte interface in the presence of nanometer-thin TiOx layers for all-solid-state batteries[J]. ChemSusChem, 2024, 17(22): e202401026. DOI: 10.1002/cssc.202401026. |
62 | ZHAO Y, LI L B, ZHOU D, et al. Add an extra layer to bring lithium-ions out of disorder for longevity of the solid full batteries[J]. Advanced Functional Materials, 2024, 34(45): 2408379. DOI: 10.1002/adfm.202408379. |
63 | JUN S, LEE G, SONG Y B, et al. Interlayer engineering and prelithiation: Empowering Si anodes for low-pressure-operating all-solid-state batteries[J]. Small, 2024, 20(25): e2309437. DOI: 10.1002/smll.202309437. |
64 | JI W J, LUO B, WANG Q, et al. Interface engineering enabling thin lithium metal electrodes down to 0.78 μm for garnet-type solid-state batteries[J]. Nature Communications, 2024, 15(1): 9920. DOI: 10.1038/s41467-024-54234-w. |
65 | ZHANG H, DENG J H, XU H T, et al. Molecule crowding strategy in polymer electrolytes inducing stable interfaces for all-solid-state lithium batteries[J]. Advanced Materials, 2024, 36(31): e2403848. DOI: 10.1002/adma.202403848. |
66 | SOHN Y, OH J, LEE J, et al. Dual-seed strategy for high-performance anode-less all-solid-state batteries[J]. Advanced Materials, 2024, 36(47): 2407443. DOI: 10.1002/adma. 202407443. |
67 | OH J, CHOI S H, KIM H, et al. Lithio-amphiphilic nanobilayer for high energy density anode-less all-solid-state batteries operating under low stack pressure[J]. Energy & Environmental Science, 2024, 17(20): 7932-7943. DOI: 10.1039/D4EE03130J. |
68 | JO Y H, LEE Y J, KIM D W. Exploring the optimal binder content in composite electrodes for sulfide-based all-solid-state lithium-ion batteries[J]. Journal of the Electrochemical Society, 2024, 171(10): 100525. DOI: 10.1149/1945-7111/ad851f. |
69 | LIAO M, XU Y B, RAHMAN M M, et al. Hybrid polymer network cathode-enabled soluble-polysulfide-free lithium-sulfur batteries[J]. Nature Sustainability, 2024, 7: 1709-1718. DOI: 10.1038/s41893-024-01453-0. |
70 | ZHONG H Y, SU Y, MA R Q, et al. Nano-scale interface engineering of sulfur cathode to enable high-performance all-solid-state Li-S batteries[J]. Advanced Functional Materials, 2024, 34(30): 2315925. DOI: 10.1002/adfm.202315925. |
71 | KONG D C, ZHU Q Y, GUAN D H, et al. A piezocatalysis strategy to enable efficient redox in solid-state battery[J]. Angewandte Chemie (International Ed), 2024: e202418174. DOI: 10.1002/anie.202418174. |
72 | KANG S H, LIM W G, XU L L, et al. Approaching high rate all-solid-State lithium-sulfur batteries via promoted sulfur conversion with nickel oxide nanoparticle electrocatalyst[J]. Chemical Engineering Journal, 2024, 490: 151489. DOI: 10.1016/j.cej. 2024.151489. |
73 | SU Z K, LI G, ZHANG J J. Coaxial nanofiber binders integrating thin and robust sulfide solid electrolytes for high-performance all-solid-state lithium battery[J]. Advanced Functional Materials, 2024: 2415409. DOI: 10.1002/adfm.202415409. |
74 | ROY I S, TAPONEN H, VÄLIKANGAS J, et al. Implementing substrate treatments to enhance adhesion and facilitate Cyrene as an NMP alternative for sustainable printed nickel-manganese-cobalt-based battery cathodes[J]. Energy Technology, 2024, 12(11): 2400638. DOI: 10.1002/ente.202400638. |
75 | ELSAYED A, VOGES K, MICHALOWSKI P, et al. Towards a scalable production of β-Li3PS4-based all-solid-state batteries: Optimizing pressing parameters of the tape-casted solid electrolyte and composite cathode films[J]. Journal of Power Sources, 2024, 613: 234772. DOI: 10.1016/j.jpowsour. 2024. 234772. |
76 | XIAO C L, WANG H G, USISKIN R, et al. Unification of insertion and supercapacitive storage concepts: Storage profiles in titania[J]. Science, 2024, 386(6720): 407-413. DOI: 10.1126/science.adi5700. |
77 | JENKINS M, DEWAR D, LAGNONI M, et al. A high capacity gas diffusion electrode for Li-O2 batteries[J]. Advanced Materials, 2024: 2405715. DOI: 10.1002/adma.202405715. |
78 | SONG Y J, WANG J, LIANG L H. Thickness effect on the mechanical performance of cathodes in lithium-ion batteries[J]. Journal of Energy Storage, 2024, 86: 111417. DOI: 10.1016/j.est. 2024.111417. |
79 | KATSUYAMA Y, YANG Z Y, THIEL M, et al. A rapid, scalable laser-scribing process to prepare Si/graphene composites for lithium-ion batteries[J]. Small, 2024, 20(28): e2305921. DOI: 10. 1002/smll.202305921. |
80 | MA L, FANG Y Y, YANG N, et al. Stabilizing the bulk-phase and solid electrolyte interphase of silicon microparticle anode by constructing gradient-hierarchically ordered conductive networks[J]. Advanced Materials, 2024, 36(30): e2404360. DOI: 10.1002/adma.202404360. |
81 | LIU Z T, CHIEN P H, WANG S, et al. Tuning collective anion motion enables superionic conductivity in solid-state halide electrolytes[J]. Nature Chemistry, 2024, 16(10): 1584-1591. DOI: 10.1038/s41557-024-01634-6. |
82 | WANG Y, WANG J J, ZHANG W W, et al. Promising VO2(B)/rGO heterojunction cathode for building high-capacity and long-lifespan Ca-ion batteries[J]. Advanced Functional Materials, 2024, 34(27): 2314761. DOI: 10.1002/adfm.202314761. |
83 | CSERNICA P M, MCCOLL K, BUSSE G M, et al. Substantial oxygen loss and chemical expansion in lithium-rich layered oxides at moderate delithiation[J]. Nature Materials, 2024. DOI: 10.1038/s41563-024-02032-6. |
84 | CUI Z H, ZUO P, GUO Z Z, et al. Formation and detriments of residual alkaline compounds on high-nickel layered oxide cathodes[J]. Advanced Materials, 2024, 36(33): 2402420. DOI: 10.1002/adma.202402420. |
85 | LI X Y, CHEN Y T, LU Y Y, et al. Spatial-dependent coupling of electrochemistry, mass transport, and stress in silicon-graphite composite electrodes for lithium-ion batteries[J]. Advanced Functional Materials, 2024: 2413560. DOI: 10.1002/adfm. 202413560. |
86 | LEE S, PARK H, KIM J Y, et al. Unveiling crystal orientation-dependent interface property in composite cathodes for solid-state batteries by in situ microscopic probe[J]. Nature Communications, 2024, 15(1): 7947. DOI: 10.1038/s41467-024-52226-4. |
87 | CHEN Y, HUANG L, ZHOU D L, et al. Elucidating and minimizing the space-charge layer effect between NCM cathode and Li6PS5Cl for sulfide-based solid-state lithium batteries[J]. Advanced Energy Materials, 2024, 14(30): 2304443. DOI: 10. 1002/aenm.202304443. |
88 | LANNELONGUE P, LINDBERG S, GONZALO E, et al. Stable cycling of halide solid state electrolyte enabled by a dynamic layered solid electrolyte interphase between Li metal and Li3YCl4Br2[J]. Energy Storage Materials, 2024, 72: 103733. DOI: 10.1016/j.ensm.2024.103733. |
89 | ALT C D, MÜLLER N U C B, RIEGGER L M, et al. Quantifying multiphase SEI growth in sulfide solid electrolytes[J]. Joule, 2024, 8(10): 2755-2776. DOI: 10.1016/j.joule.2024.07.006. |
90 | GUO W D, SUN Z C, GUO J, et al. Digital twin-assisted degradation diagnosis and quantification of NMC battery aging effects during fast charging[J]. Advanced Energy Materials, 2024: 2401644. DOI: 10.1002/aenm.202401644. |
91 | LIU C L, ROTERS F, RAABE D. Role of grain-level chemo-mechanics in composite cathode degradation of solid-state lithium batteries[J]. Nature Communications, 2024, 15: 7970. DOI: 10.1038/s41467-024-52123-w. |
92 | WANG C H, WANG S W, LING C. Chemical roadmap toward stable electrolyte-electrode interfaces in all-solid-state batteries[J]. ACS Energy Letters, 2024, 9(11): 5349-5359. DOI: 10.1021/acsenergylett.4c01618. |
93 | AKTEKIN B, KATAEV E, RIEGGER L M, et al. operando photoelectron spectroscopy analysis of Li6PS5Cl electrochemical decomposition reactions in solid-state batteries[J]. ACS Energy Letters, 2024, 9(7): 3492-3500. DOI: 10.1021/acsenergylett.4c01072. |
94 | ZHANG Z J, XIAO X, YAN A J, et al. Breaking the capacity bottleneck of lithium-oxygen batteries through reconceptualizing transport and nucleation kinetics[J]. Nature Communications, 2024, 15(1): 9952. DOI: 10.1038/s41467-024-54366-z. |
95 | MAITY A, SVIRINOVSKY-ARBELI A, BUGANIM Y, et al. Tracking dendrites and solid electrolyte interphase formation with dynamic nuclear polarization-NMR spectroscopy[J]. Nature Communications, 2024, 15(1): 9956. DOI: 10.1038/s41467-024-54315-w. |
96 | KURIHARA K, NAKAMIZO S, YAMAMOTO S, et al. Li concentration change around Cu/LiPON interface measured by TOF-ERDA[J]. Journal of Solid State Electrochemistry, 2024, 28(12): 4451-4456. DOI: 10.1007/s10008-024-05865-y. |
97 | JO S, SEO S, KANG S K, et al. Thermal runaway mechanism in Ni-rich cathode full cells of lithium-ion batteries: The role of multidirectional crosstalk[J]. Advanced Materials, 2024, 36(31): e2402024. DOI: 10.1002/adma.202402024. |
98 | JEON T, JUNG S C. Enhancing lithium conductivity using high-valence cations in cubic spinel halide solid electrolytes[J]. ACS Applied Materials & Interfaces, 2024, 16(36): 47443-47453. DOI: 10.1021/acsami.4c07798. |
99 | YU Y R, HUANG Y Y, XU Z B, et al. A high-voltage solid state electrolyte based on spinel-like chloride made of low-cost and abundant resources[J]. Advanced Functional Materials, 2024, 34(24): 2315512. DOI: 10.1002/adfm.202315512. |
100 | LU Z, HAO S, AYKOL M, et al. Lithium transport in crystalline and amorphous cathode coatings for Li-ion batteries[J]. Chemistry of Materials, 2024, 36(20): 10205-10215. |
[1] | 刘通, 杨瑰婷, 毕辉, 梅悦旎, 刘硕, 宫勇吉, 罗文雷. 高能量密度与高功率密度兼顾型锂离子电池研究现状与展望[J]. 储能科学与技术, 2025, 14(1): 54-76. |
[2] | 江训昌, 喻科霖, 杨大祥, 廖敏会, 周洋. 原位聚合制备PDOL基固态电解质及其在锂金属电池中的应用[J]. 储能科学与技术, 2025, 14(1): 1-12. |
[3] | 周洪, 俞海龙, 王丽平, 黄学杰. 基于BERTopic主题模型的锂电池前沿监测及主题分析研究[J]. 储能科学与技术, 2025, 14(1): 406-416. |
[4] | 刘迎迎, 张孝远, 刘梦楠, 孙俊章, 张艳. 基于自适应最优组合核函数高斯过程回归的锂电池健康状态区间估计[J]. 储能科学与技术, 2025, 14(1): 346-357. |
[5] | 陈星光, 沈逸凡, 邵裕新, 郑岳久, 孙涛, 来鑫, 沈凯, 韩雪冰. 面向实车应用的磷酸铁锂电池容量辨识及特异性优化方法研究[J]. 储能科学与技术, 2024, 13(9): 2963-2971. |
[6] | 黎耀康, 杨海东, 徐康康, 蓝昭宇, 章润楠. 基于加权UMAP和改进BLS的锂电池温度预测[J]. 储能科学与技术, 2024, 13(9): 3006-3015. |
[7] | 焦君宇, 张全權, 陈宁波, 王冀钰, 芦秋迪, 丁浩浩, 彭鹏, 宋孝河, 张帆, 郑家新. 电池大数据智能分析平台的研发与应用[J]. 储能科学与技术, 2024, 13(9): 3198-3213. |
[8] | 刘莹, 孙丙香, 赵鑫泽, 张珺玮. 基于电热耦合模型的宽温域锂离子电池SOC/SOP联合估计[J]. 储能科学与技术, 2024, 13(9): 3030-3041. |
[9] | 周国兵, 许审镇. 锂金属负极固态电解质界面膜形成和生长机理的理论研究进展[J]. 储能科学与技术, 2024, 13(9): 3150-3160. |
[10] | 张新新, 岑官骏, 乔荣涵, 朱璟, 郝峻丰, 孙蔷馥, 田孟羽, 金周, 詹元杰, 闫勇, 贲留斌, 俞海龙, 刘燕燕, 周洪, 黄学杰. 锂电池百篇论文点评(2024.06.01—2024.07.31)[J]. 储能科学与技术, 2024, 13(9): 3226-3244. |
[11] | 孔妍妍, 张熊, 安亚斌, 李晨, 孙现众, 王凯, 马衍伟. MOF衍生多孔碳基材料的制备及其在锂离子电容器负极中的应用进展[J]. 储能科学与技术, 2024, 13(8): 2665-2678. |
[12] | 杨凯悦, 谢欣兵, 杜晓钟. 基于离散元法的锂电池极片辊压过程探究[J]. 储能科学与技术, 2024, 13(8): 2570-2579. |
[13] | 陈峥, 杨博, 赵志刚, 申江卫, 肖仁鑫, 夏雪磊. 考虑锂电池温度和老化的荷电状态估算[J]. 储能科学与技术, 2024, 13(8): 2813-2822. |
[14] | 张结雨, 张顺, 李宁, 曾芳磊, 丁建宁. 阻燃凝胶聚合物电解质的制备及其性能研究[J]. 储能科学与技术, 2024, 13(8): 2529-2540. |
[15] | 许超锋, 韩晓蕾, 王进芝, 王晓君, 刘治明, 赵井文. 基于弱配位环境的晶态锌离子固态电解质[J]. 储能科学与技术, 2024, 13(8): 2519-2528. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||