储能科学与技术 ›› 2025, Vol. 14 ›› Issue (10): 3875-3899.doi: 10.19799/j.cnki.2095-4239.2025.0394
牛嘉1,2(), 张慧敏2, 张松通2, 王立华4, 姚佳欣1, 孟闻捷2, 王贵领1, 邱景义2, 方振华3, 明海2(
)
收稿日期:
2025-04-23
修回日期:
2025-05-19
出版日期:
2025-10-28
发布日期:
2025-10-20
通讯作者:
明海
E-mail:niujia917@163.com;hai.mingenergy@hotmail.com
作者简介:
牛嘉(2001—),女,硕士研究生,主要研究方向为电池试验检测与评估,E-mail:niujia917@163.com;
基金资助:
Jia NIU1,2(), Huimin ZHANG2, Songtong ZHANG2, Lihua WANG4, Jiaxin YAO1, Wenjie MENG2, Guiling WANG1, Jingyi QIU2, Zhenhua FANG3, Hai MING2(
)
Received:
2025-04-23
Revised:
2025-05-19
Online:
2025-10-28
Published:
2025-10-20
Contact:
Hai MING
E-mail:niujia917@163.com;hai.mingenergy@hotmail.com
摘要:
随着各国对海洋利益的重视以及深远海作业的需求,为了满足水面-水下各类有人/无人舰、船、艇、机器人、预置传感器等的续航时间、极端环境和复杂工况需求,尤其是高载荷快速机动、超长续航、超久预置等对战场电能源一体化保障的供电性能需求提升,亟待开发满足海上作战平台用电能源“获取-储存-传输-组网”的电能源区域一体化保障体系,实现水面-水下电能源的快速补充,或构建高效快速反应的伴随保障策略及配套供配电系统。目前应用于海上作战平台且受到广泛关注的电能源技术主要有平台动力用化学电源、长续航贮备电源、水下预置大规模储能、海洋环境机械能转化、海洋环境太阳能转化、海洋环境生物能转化、水下电能源保障区域组网等技术,随着近些年化学电源、无线传能、太阳能、波浪能、生物质能、核能等能源技术的快速发展,水面-水下区域一体化电能源保障体系的组建态势越来越明显。因此,为遴选性能更好、更匹配的能源获取、传输、储能和组网技术服务于海上作战电能源保障的迭代升级和应用创新,本文对现有海上作战电能源保障的技术最新研究进展进行了梳理,综述了各技术体系当前的发展水平、技术能力以及亟待突破的关键技术,并对未来构建水面-水下电能源区域一体化保障体系进行了分析研究。
中图分类号:
牛嘉, 张慧敏, 张松通, 王立华, 姚佳欣, 孟闻捷, 王贵领, 邱景义, 方振华, 明海. 海上作战用电能源技术应用分析[J]. 储能科学与技术, 2025, 14(10): 3875-3899.
Jia NIU, Huimin ZHANG, Songtong ZHANG, Lihua WANG, Jiaxin YAO, Wenjie MENG, Guiling WANG, Jingyi QIU, Zhenhua FANG, Hai MING. Application of electric energy technologies in naval combat operations[J]. Energy Storage Science and Technology, 2025, 14(10): 3875-3899.
表1
海上作战用电能源技术关键参数对比"
序号 | 技术类别 | 电压等级 | 能量密度 | 功率密度/功率等级 | 循环寿命 | 海上典型应用 | 技术优势 | 待突破关键技术 |
---|---|---|---|---|---|---|---|---|
1 | 锂电池 | 单体通常大于3.0 V;钛酸锂电池不超过3 V(1.5~2.75 V)。 | 当前一般为200 Wh/kg,希望发展到500 Wh/kg。 | 单体可以实现大于10 kW/kg,系统可以实现大于1 kW/kg。 | 分一次电池和二次电池,二次电池使用寿命大于500次。 | 水面舰艇、潜艇、两栖无人机、海上航空飞机、水下单兵系统、预置储能等。 | ①能量密度高,功率密度高;②循环寿命长;③维护要求较低。 | ①安全性,尤其是水下密闭空间;②水下挤压、振动等环境下的失效机制分析;③海水浸泡时的安全性。 |
2 | 铅酸电池 | 单体通常为2 V。 | 当前一般在30~50 Wh/kg。 | 可实现300 W/kg,新型铅碳电池可提升至400 W/kg以上。 | 循环寿命通常在300~1200次,取决于使用方式(启动<动力<深循环≈储能)。 | 水面舰艇、潜艇、无人潜航器、海上航空飞机、两栖作战车辆、预置储能等。 | ①材料及制作成本低,易维护;②机械稳定性优异,安全性高;③脉冲功率适中,大电流深放电特性稳定。 | ①能量密度提升,特别是作为动力电池使用时;②海水环境中耐腐蚀性强化;③宽温域性能提升。 |
3 | 燃料电池 | 单体实际工作电压一般在0.5~0.9 V,通常串联为电堆。 | 与所用燃料相关,在100~600 Wh/kg区间。 | 单体电堆普遍超过2.5 kW/L,系统级则大于300 W/kg。 | 循环寿命通常大于3000小时,希望达到10000小时以上。 | 水面舰艇、潜艇、无人潜航器、无人机、海底基站等。 | ①能量转换效率高,燃料补充便捷;②可实现发供电一体,持续性强;③无自放电损耗。 | ①高性能低成本催化剂开发,以降低使用成本;②质子交换膜优化,以提升质子传导率,提升电池稳定性;③功率性能和系统的功率自适应调节能力提升。 |
4 | 银锌电池 | 单体为1.5 V。 | 当前一般为40~110 Wh/kg。 | 实际应用中通常在300~600 W/kg。 | 常规产品仅30~100次循环,优化后可达150~200 次。 | 导弹、鱼雷、设备应急电源、高端手持设备等。 | ①能量密度高,功率密度高;②冷启动瞬时电流大,放电曲线稳定;③抗震动与冲击能力强,低温性能优异;④自放电率低,长期储存稳定。 | ①提升循环寿命;②提升高低温性能,拓宽温域;③研发银替代材料。 |
5 | 铝氧化银电池 | 单体约为1.55 V。 | 当前能量密度已达到450~620 Wh/kg。 | 实际功率密度已达1200~1500 W/kg。 | 属一次电池,无循环能力。 | 导弹、鱼雷、设备应急电源、高端手持设备等。 | ①超高能量密度,极高脉冲功率密度;②稳定高电压平台③宽温工作范围,抗震动与冲击能力强;④低自放电率,高储存寿命,高安全性。 | ①可逆反应机制研究,探索有限循环能力;②进一步提升高低温性能,拓宽温域;③研发银替代材料。 |
6 | 核电 | 通过大型发电机输出10~20 kV电压,依赖超高压/特高压网络实现远距离大容量输送。 | 极高,如:铀完全裂变可释放出8.2×1013 J/kg。 | 根据用途,不同设计的核反应堆功率密度在10~500 MW/m3。 | 属反应堆,可依靠裂变材料持续工作。 | 大型发电储能基站、水下预置基站等。 | ①极高能量密度,紧凑型高;②持续供电能力突出。 | ①废料处理及核材料防扩散;②耐高温材料、超导磁体等结构部件性能优化;③核堆的小型化。 |
7 | 海上可再生能源转换电源 | 从低压(0.9 V)到超高压(320 kV)不等,风力发电的中压输出(10~35 kV)是海上发电端主流等级。 | 理论上,海上机械能为10~64 kJ/m3,太阳辐射能为1000~1500 kWh/(m2·a)(年均辐照能量),生物质能为15~20 MJ/kg。 | 海上机械能达0.51~15 kW/m2,海上光伏为80-120 W/m2,海洋生物质能仅0.1~0.5 W/m2。 | 属可再生能源,可依靠风、光、生物质、海水等材料持续发电。 | 海上储能基站供给源、移动作战设备燃料补给等。 | ①可持续利用;②环境友好;③地域分布均匀。 | ①能量捕获与转换效率需提高;②能量整合方式待进一步优化,并网稳定性需提升;③智能化、自动化设备维护方式需研发探索。 |
[1] | PRINS C, STAPERSMA D. AIP for ocean going submarines: off-the-shelf or promise[C]//Proceedings of the Conference Proceedings of INEC, 2020. |
[2] | 李伟, 李天伟. 各国无人艇技术的军事化应用与智能化升级[J]. 飞航导弹, 2020(10): 60-62. DOI: 10.16338/j.issn.1009-1319.2020 0029. |
LI W, LI T W. Military application and intelligent upgrade of unmanned boat technology in various countries[J]. Aerodynamic Missile Journal, 2020(10): 60-62. DOI: 10.16338/j.issn.1009-1319.20200029. | |
[3] | MICALLEF A, APAP M, LICARI J, et al. Renewable energy systems in offshore platforms for sustainable maritime operations[J]. Ocean Engineering, 2025, 319: 120209. DOI: 10.1016/j.oceaneng.2024. 120209. |
[4] | WYCKOFF K, MOAZENI F, KHAZAEI J, et al. Economic dispatch of offshore renewable energy resources for islanded communities with optimal storage sizing[J]. Renewable Energy, 2025, 241: 122153. DOI: 10.1016/j.renene.2024.122153. |
[5] | 李永奇, 杜蕴, 方振华, 等. 军用新能源微电网系统的运维及故障处置分析[J]. 储能科学与技术, 2024, 13(8): 2740-2757. DOI: 10. 19799/j.cnki.2095-4239.2024.0184. |
LI Y Q, DU Y, FANG Z H, et al. Review of the operation and fault handling analysis of new energy microgrid systems in military applications[J]. Energy Storage Science and Technology, 2024, 13(8): 2740-2757. DOI: 10.19799/j.cnki.2095-4239.2024.0184. | |
[6] | SMITH P H, JAMES S D, KELLER P B. US Navy battery requirements and development efforts[C]//Proceedings of the Tenth Annual Battery Conference on Applications and Advances. January 10-13, 1995, Long Beach, CA, USA. IEEE, 1995: 33-37. DOI: 10.1109/BCAA.1995.398513. |
[7] | TIMMONS J, KURIAN R, GOODMAN A, et al. The sealed lead–acid battery: Performance and present aircraft applications[J]. Journal of Power Sources, 2004, 136(2): 372-375. DOI: 10.1016/j.jpowsour.2004.03.045. |
[8] | ZHANG Y, ZHOU C G, YANG J, et al. Advances and challenges in improvement of the electrochemical performance for lead-acid batteries: A comprehensive review[J]. Journal of Power Sources, 2022, 520: 230800. DOI: 10.1016/j.jpowsour.2021.230800. |
[9] | KIRCHEV A, DUMENIL S, ALIAS M, et al. Carbon honeycomb grids for advanced lead-acid batteries. Part II: Operation of the negative plates[J]. Journal of Power Sources, 2015, 279: 809-824. DOI: 10.1016/j.jpowsour.2015.01.028. |
[10] | KIRCHEV A, KIRCHEVA N, PERRIN M. Carbon honeycomb grids for advanced lead-acid batteries. Part I: Proof of concept[J]. Journal of Power Sources, 2011, 196(20): 8773-8788. DOI: 10.1016/j.jpowsour.2011.06.021. |
[11] | 陈泽宇, 闫常瑜, 陈志雪. 炭材料在铅酸蓄电池中应用研究的综述[J]. 蓄电池, 2016, 53(5): 246-250. DOI: 10.16679/j.cnki.21-1121. 2016.05.011. |
CHEN Z Y, YAN C Y, CHEN Z X. An overview of research and application of carbon materials in lead-acid batteries[J]. Chinese Labat Man, 2016, 53(5): 246-250. DOI: 10.16679/j.cnki.21-1121. 2016.05.011. | |
[12] | 周念福, 邢福, 渠继东. 大排量无人潜航器发展及关键技术[J]. 舰船科学技术, 2020, 42(13): 1-6. |
ZHOU N F, XING F, QU J D. The development of large displacement unmanned underwater vehicle of foreign navy and its key technologies[J]. Ship Science and Technology, 2020, 42(13): 1-6. | |
[13] | ZAFAR S, KHAN A. Integrated hydrogen fuel cell power system as an alternative to diesel-electric power system for conventional submarines[J]. International Journal of Hydrogen Energy, 2024, 51: 1560-1572. DOI: 10.1016/j.ijhydene.2023.08.370. |
[14] | FRÜHLING C, SCHIEMANN M. Subsea power supply based on submarine propulsion technology[C]//Offshore Technology Conference. May 4-7, 2015. Houston, Texas, USA. OTC, 2015: OTC-25732-MS.. DOI: 10.4043/25732-ms. |
[15] | 郎俊山, 宋红磊. 超级铅酸蓄电池研究进展[J]. 广东化工, 2016, 43(9): 148-149. |
LANG J S, SONG H L. Review of ultra lead-acid batteries[J]. Guangdong Chemical Industry, 2016, 43(9): 148-149. | |
[16] | YOON Y. Characteristic analysis of lithium-ion battery and lead-acid battery using battery simulator[J]. The Journal of The Institute of Internet Broadcasting and Communication, 2024, 24(2): 127-132. |
[17] | ZALOSH R, GANDHI P, BAROWY A. Lithium-ion energy storage battery explosion incidents[J]. Journal of Loss Prevention in the Process Industries, 2021, 72: 104560. DOI: 10.1016/j.jlp.2021. 104560. |
[18] | KIM B, SOHN S H, KANG S. An experimental study on the charging/discharging characteristics and safety of lithium-ion battery system for submarine propulsion[J]. Journal of the Society of Naval Architects of Korea, 2021, 58(4): 225-233. DOI: 10.3744/snak.2021.58.4.225. |
[19] | 马永龙, 聂冬, 刘飞. 国外潜艇锂离子动力电池应用情况及技术分析[J]. 船电技术, 2021, 41(8): 4-7. DOI: 10.13632/j.meee. 2021. 08.002. |
MA Y L, NIE D, LIU F. Application and analysis of lithium-ion batteries for submarine in foreign countries[J]. Marine Electric & Electronic Engineering, 2021, 41(8): 4-7. DOI: 10.13632/j.meee. 2021.08.002. | |
[20] | ROMANOVSKY V, NIKIFOROV B, AVRAMENKO A. Improvement of lithium-ion rechargeable battery (LIRB) for electric ships[J]. Journal of Physics: Conference Series, 2021, 2131(4): 042100. DOI: 10.1088/1742-6596/2131/4/042100. |
[21] | VUTETAKIS D G, TIMMONS J B. A comparison of lithium-ion and lead-acid aircraft batteries[C]//SAE Technical Paper Series. SAE International, 2008: DOI: 10.4271/2008-01-2875. |
[22] | SANTEE S, CURRIER J, PUGLIA F, et al. Development of lithium-ion batteries for naval aviation applications[J]. SAE International Journal of Aerospace, 2012, 5(2): 541-547. DOI: 10.4271/2012-01-2227. |
[23] | LIU Y, SU M Y, GU Z Y, et al. Advanced lithium primary batteries: Key materials, research progresses and challenges[J]. The Chemical Record, 2022, 22(10): e202200081. DOI: 10.1002/tcr. 202200081. |
[24] | MITSUSHIMA S, HACKER V. Fuel cells and hydrogen: From fundamentals to applied research[M]. Elsevier, 2018. |
[25] | SATTLER G. Fuel cells going on-board[J]. Journal of Power Sources, 2000, 86(1/2): 61-67. DOI: 10.1016/S0378-7753(99)00414-0. |
[26] | ADAMS V W. Possible fuel cell applications for ships and submarines[J]. Journal of Power Sources, 1990, 29(1/2): 181-192. DOI: 10.1016/0378-7753(90)80018-9. |
[27] | 李玉荣. 德国海军潜艇发展思路分析[J]. 现代军事, 2017(9):56-62. DOI:10.16338/j.issn.1009-1319.20210028. |
LI Y R. Analysis on the development of U.S. navy submarines[J]. Conmilit, 2017(9):56-62. DOI:10.16338/j.issn.1009-1319. 20210028. | |
[28] | GHEZEL-AYAGH H, JOLLY S, SANDERSON R, et al. Hybrid SOFC-battery power system for large displacement unmanned underwater vehicles[J]. ECS Transactions, 2013, 51(1): 95-101. DOI: 10.1149/05101.0095ecst. |
[29] | 李伯犀, 辛树鹏. 液氢在无人机中应用展望[J]. 低温工程, 2024(5): 104-110. |
LI B X, XIN S P. Prospects for application of liquid hydrogen in unmanned aerial vehicles[J]. Cryogenics, 2024(5): 104-110. | |
[30] | HYAKUDOME T, YOSHIDA H, NAKATANI T, et al. Development of fuel cell system for underwater power source[C]//2013 MTS/IEEE OCEANS - Bergen. June 10-14, 2013, Bergen, Norway. IEEE, 2013: 1-6. DOI: 10.1109/OCEANS-Bergen.2013.6608025. |
[31] | 戴月领, 贺云涛, 刘莉, 等. 燃料电池无人机发展及关键技术分析[J]. 战术导弹技术, 2018(1): 65-71. DOI: 10.16358/j.issn.1009-1300. 2018.01.12. |
DAI Y L, HE Y T, LIU L, et al. Development of fuel cell UAV and analysis of key technology[J]. Tactical Missile Technology, 2018(1): 65-71. DOI: 10.16358/j.issn.1009-1300.2018.01.12. | |
[32] | VEGH J M. Hybrid-electric design studies for a long-endurance tailsitter concept[C]//AIAA SCITECH 2025 Forum. 6-10 January 2025, Orlando, FL. Reston, Virginia: AIAA, 2025: 1436. DOI: 10. 2514/6.2025-1436. |
[33] | SHEN Z N, LIU S Q, ZHU W, et al. A review on key technologies and developments of hydrogen fuel cell multi-rotor drones[J]. Energies, 2024, 17(16): 4193. DOI: 10.3390/en17164193. |
[34] | BROOKS K P, SNOWDEN-SWAN L J, JONES S B, et al. Low-carbon aviation fuel through the alcohol to jet pathway[M]// Biofuels for Aviation. Amsterdam: Elsevier, 2016: 109-150. DOI: 10.1016/B978-0-12-804568-8.00006-8. |
[35] | MARCO S. Set-up of a mechatronic test benchfor hardware-in-the-loop simulationof floating offshore wind turbine[D]. Turin: Politecnico di Torino, 2019. |
[36] | MAINAR A R, IRUIN E, BLÁZQUEZ J A. High performance secondary zinc-air/silver hybrid battery[J]. Journal of Energy Storage, 2021, 33: 102103. DOI: 10.1016/j.est.2020.102103. |
[37] | KIM Y, LEE W G. Primary seawater batteries[M]. Springer, 2022: 37-90. |
[38] | 刘勇, 陈洪钧. 鱼雷电池进展[J]. 电源技术, 2012, 36(3): 444-445. DOI: 10.3969/j.issn.1002-087X.2012.03.045. |
LIU Y, CHEN H J. Review of battery for torpedo[J]. Chinese Journal of Power Sources, 2012, 36(3): 444-445. DOI: 10.3969/j.issn.1002-087X.2012.03.045. | |
[39] | GITZENDANNER R, PUGLIA F, MARTIN C, et al. High power and high energy lithium-ion batteries for under-water applications[J]. Journal of Power Sources, 2004, 136(2): 416-418. DOI: 10. 1016/j.jpowsour.2004.03.032. |
[40] | GHEZEL-AYAGH H, JUNKER S T, PETERS J A, et al. Development of solid oxide fuel cell power systems for underwater applications[J]. ECS Transactions, 2008, 12(1): 707-711. DOI: 10.1149/1.2921596. |
[41] | RAGIT S S, SINGH K, SRINIVAS M. Feasibility study of lithium ion batteries for torpedo applications[J]. Defence Science Journal, 2023, 73(6): 757-764. DOI: 10.14429/dsj.73.19015. |
[42] | FU Z H, LU L, ZHANG C Z, et al. Fuel cell and hydrogen in maritime application: A review on aspects of technology, cost and regulations[J]. Sustainable Energy Technologies and Assessments, 2023, 57: 103181. DOI: 10.1016/j.seta.2023.103181. |
[43] | PRELAS M A, WEAVER C L, WATERMANN M L, et al. A review of nuclear batteries[J]. Progress in Nuclear Energy, 2014, 75: 117-148. DOI: 10.1016/j.pnucene.2014.04.007. |
[44] | 袁永龙, 高寒雨, 李晓洁. 美国防部"贝利" 计划再度引发争议[J]. 国外核新闻, 2021(7): 25-27. |
YUAN Y L, GAO H Y, LI X J. The US Department of Defense's "Bailey" plan has once again caused controversy[J]. Foreign Nuclear News, 2021(7): 25-27. | |
[45] | HILAND L, KARTVEDT N, ROLLE K, et al. Lunar power: Radioisotope thermoelectric generator[R]. Scholarly Commons, 2024. |
[46] | AFFOLTER M, THOMPSON R, HEPNER S, et al. The Orbitron: A crossed-field device for co-confinement of high energy ions and electrons[J]. AIP Advances, 2024, 14(8): 085025. DOI: 10.1063/5.0201470. |
[47] | LEE J I. Review of small modular reactors: Challenges in safety and economy to success[J]. Korean Journal of Chemical Engineering, 2024, 41(10): 2761-2780. DOI: 10.1007/s11814-024-00207-0. |
[48] | HUA X, ZHANG C H, WEI J D, et al. Wind turbine bionic blade design and performance analysis[J]. Journal of Visual Communication and Image Representation, 2019, 60: 258-265. DOI: 10.1016/j.jvcir.2019.01.037. |
[49] | SOUDAN B. Community-scale baseload generation from marine energy[J]. Energy, 2019, 189: 116134. DOI: 10.1016/j.energy. 2019.116134. |
[50] | HOKANSON M. Avoiding the doldrums: Evaluating the need for change in the offshore wind permitting process[J]. Columbia Journal of Environmental Law, 2019, 44: DOI:10.7916/CJEL.V44I1.808. |
[51] | HE Z X, XU S C, SHEN W X, et al. Review of factors affecting China's offshore wind power industry[J]. Renewable and Sustainable Energy Reviews, 2016, 56: 1372-1386. DOI: 10. 1016/j.rser.2015.12.037. |
[52] | HU M F, SHI J K, YANG S, et al. Current status and future trends in installation, operation and maintenance of offshore floating wind turbines[J]. Journal of Marine Science and Engineering, 2024, 12(12): 2155. DOI: 10.3390/jmse12122155. |
[53] | SU X, WANG X D, XU W L, et al. Offshore wind power: Progress of the edge tool, which can promote sustainable energy development[J]. Sustainability, 2024, 16(17): 7810. DOI: 10.3390/su16177810. |
[54] | LI Q W, WANG J Z, ZHANG H P. Comparison of the goodness-of-fit of intelligent-optimized wind speed distributions and calculation in high-altitude wind-energy potential assessment[J]. Energy Conversion and Management, 2021, 247: 114737. DOI: 10.1016/j.enconman.2021.114737. |
[55] | PAVKOVIĆ D, HOIĆ M, DEUR J, et al. Energy storage systems sizing study for a high-altitude wind energy application[J]. Energy, 2014, 76: 91-103. DOI: 10.1016/j.energy.2014.04.001. |
[56] | CORDLE A, JONKMAN J M, HASSAN G G. State of the art in floating wind turbine design tools[C]//The 21 International Ocean and Polar Engineering Conference, Maui, Hawaii, USA, 2011. |
[57] | GUILLOU N, LAVIDAS G, CHAPALAIN G. Wave energy resource assessment for exploitation-a review[J]. Journal of Marine Science and Engineering, 2020, 8(9): 705. DOI: 10.3390/jmse 8090705. |
[58] | LEHMANN M, KARIMPOUR F, GOUDEY C A, et al. Ocean wave energy in the United States: Current status and future perspectives[J]. Renewable and Sustainable Energy Reviews, 2017, 74: 1300-1313. DOI: 10.1016/j.rser.2016.11.101. |
[59] | FREEMAN M C, O'NEIL R, GARAVELLI L, et al. Case study on the novel permitting and authorization of PacWave South, a US grid-connected wave energy test facility: Development, challenges, and insights[J]. Energy Policy, 2022, 168: 113141. DOI: 10.1016/j.enpol.2022.113141. |
[60] | MORALES R, SEGURA E. Tidal and ocean current energy[J]. Journal of Marine Science and Engineering, 2023, 11(4): 683. DOI: 10.3390/jmse11040683. |
[61] | PARK E S, LEE T S. The rebirth and eco-friendly energy production of an artificial lake: A case study on the tidal power in South Korea[J]. Energy Reports, 2021, 7: 4681-4696. DOI: 10.1016/j.egyr.2021.07.006. |
[62] | BAHAJ A S. Marine current energy conversion: The dawn of a new era in electricity production[J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2013, 371(1985): 20120500. DOI: 10.1098/rsta.2012. 0500. |
[63] | KUSCHKE M, STRUNZ K. Modeling of tidal energy conversion systems for smart grid operation[C]//2011 IEEE Power and Energy Society General Meeting. July 24-28, 2011, Detroit, MI, USA. IEEE, 2011: 1-3. DOI: 10.1109/PES.2011.6039114. |
[64] | COPPING A E, MARTÍNEZ M L, HEMERY L G, et al. Recent advances in assessing environmental effects of marine renewable energy around the world[J]. Marine Technology Society Journal, 2024, 58(3): 70-87. DOI: 10.4031/mtsj.58.3.2. |
[65] | KHOJASTEH D, LEWIS M, TAVAKOLI S, et al. Sea level rise will change estuarine tidal energy: A review[J]. Renewable and Sustainable Energy Reviews, 2022, 156: 111855. DOI: 10.1016/j.rser.2021.111855. |
[66] | WANG Y R, LIN R X, WANG X Y, et al. Oxidation-resistant all-perovskite tandem solar cells in substrate configuration[J]. Nature Communications, 2023, 14: 1819. DOI: 10.1038/s41467-023-37492-y. |
[67] | KABIR E, KUMAR P, KUMAR S, et al. Solar energy: Potential and future prospects[J]. Renewable and Sustainable Energy Reviews, 2018, 82: 894-900. DOI: 10.1016/j.rser.2017.09.094. |
[68] | TIAN Y, ZHAO C Y. A review of solar collectors and thermal energy storage in solar thermal applications[J]. Applied Energy, 2013, 104: 538-553. DOI: 10.1016/j.apenergy.2012.11.051. |
[69] | WEN Y, LIN P. Offshore solar photovoltaic potential in the seas around China, J. Applied Energy, 2024, 376: 124279. WEN Y, LIN P Z. Offshore solar photovoltaic potential in the seas around China[J]. Applied Energy, 2024, 376: 124279. DOI: 10. 1016/j.apenergy.2024.124279. |
[70] | HUANG G Z, TANG Y C, CHEN X, et al. A comprehensive review of floating solar plants and potentials for offshore applications[J]. Journal of Marine Science and Engineering, 2023, 11(11): 2064. DOI: 10.3390/jmse11112064. |
[71] | MOHAMMAD A, MAHJABEEN F. Promises and challenges of perovskite solar cells: A comprehensive review[J]. BULLET: Jurnal Multidisiplin Ilmu, 2023, 2(5): 1147-1157. |
[72] | RU X N, QU M H, WANG J Q, et al. 25.11% efficiency silicon heterojunction solar cell with low deposition rate intrinsic amorphous silicon buffer layers[J]. Solar Energy Materials and Solar Cells, 2020, 215: 110643. DOI: 10.1016/j.solmat.2020. 110643. |
[73] | RAMANUJAM J, BISHOP D M, TODOROV T K, et al. Flexible CIGS, CdTe and a-Si: H based thin film solar cells: A review[J]. Progress in Materials Science, 2020, 110: 100619. DOI: 10.1016/j.pmatsci.2019.100619. |
[74] | VEGA L A. Ocean thermal energy conversion[M]//Encyclopedia of Sustainability Science and Technology. New York, NY: Springer New York, 2012: 7296-7328. DOI: 10.1007/978-1-4419-0851-3_695. |
[75] | VON JOUANNE A, BREKKEN T K A. Ocean and geothermal energy systems[J]. Proceedings of the IEEE, 2017, 105(11): 2147-2165. |
[76] | BORGES POSTERARI J, WASEDA T, YASUNAGA T, et al. Spatial and temporal variability of ocean thermal energy resource of the Pacific Islands[J]. Energies, 2024, 17(11): 2766. DOI: 10.3390/en17112766. |
[77] | PREVISIC M, CHOZAS J. International levelised cost of energy for ocean energy technologies[R]. International Energy Agency, 2015. |
[78] | NIHOUS G C. A preliminary assessment of ocean thermal energy conversion resources[J]. Journal of Energy Resources Technology, 2007, 129(1): 10-17. DOI: 10.1115/1.2424965. |
[79] | NGUYEN V G, TRAN M H, PARAMASIVAM P, et al. Biomass: A versatile resource for biofuel, industrial, and environmental solution[J]. International Journal on Advanced Science, Engineering and Information Technology, 2024, 14(1): 268-286. DOI: 10.18517/ijaseit.14.1.17489. |
[80] | ISLAM RONY Z, RASUL M G, JAHIRUL M I, et al. Harnessing marine biomass for sustainable fuel production through pyrolysis to support United Nations' Sustainable Development Goals[J]. Fuel, 2024, 358: 130099. DOI: 10.1016/j.fuel.2023.130099. |
[81] | STRIK D P B T B, TIMMERS R A, HELDER M, et al. Microbial solar cells: Applying photosynthetic and electrochemically active organisms[J]. Trends in Biotechnology, 2011, 29(1): 41-49. DOI: 10.1016/j.tibtech.2010.10.001. |
[82] | 付玉彬, 李建海, 赵仲凯, 等. 海底生物燃料电池作为电源驱动小型电子器件的应用研究[J]. 中国海洋大学学报(自然科学版), 2012, 42(6): 93-98. DOI: 10.16441/j.cnki.hdxb.2012.06.015. |
FU Y B, LI J H, ZHAO Z K, et al. Application research of marine sediment microbial fuel cell as power supply to drive small electronic equipments[J]. Periodical of Ocean University of China, 2012, 42(6): 93-98. DOI: 10.16441/j.cnki.hdxb.2012. 06.015. | |
[83] | RAMANAN A V, PAKIRISAMY M, WILLIAMSON S S. Advanced fabrication, modeling, and testing of a microphotosynthetic electrochemical cell for energy harvesting applications[J]. IEEE Transactions on Power Electronics, 2015, 30(3): 1275-1285. DOI: 10.1109/TPEL.2014.2317675. |
[84] | S K. Growing power [energy microbacterial batteries], J. Engineering & Technology, 2013, 8(7): 76-9. |
[85] | BAWEJA P, KUMAR G. Algal fuels: A green alternative to combat climate change[J]. Journal of Biotechnology and Bioengineering Research, 2024, 11(1): 21-31. |
[86] | KIM N J, LI H, JUNG K, et al. Ethanol production from marine algal hydrolysates using Escherichia coli KO11[J]. Bioresource Technology, 2011, 102(16): 7466-7469. DOI: 10.1016/j.biortech. 2011.04.071. |
[87] | MATSUMOTO M, YOKOUCHI H, SUZUKI N, et al. Saccharification of marine microalgae using marine bacteria for ethanol production[J]. Applied Biochemistry and Biotechnology, 2003, 105 -108: 247-254. DOI: 10.1385/abab:105:1-3:247. |
[88] | NARAYANAN M. Marine algae biomass: A viable and renewable resource for biofuel production: A review[J]. Algal Research, 2024, 82: 103687. DOI: 10.1016/j.algal.2024.103687. |
[89] | ALVARADO-RAMÍREZ L, SANTIESTEBAN-ROMERO B, POSS G, et al. Sustainable production of biofuels and bioderivatives from aquaculture and marine waste[J]. Frontiers in Chemical Engineering, 2023, 4: 1072761. DOI: 10.3389/fceng.2022.1072761. |
[90] | KOMBARGI A, ELLIS E, GODART P, et al. Enhanced recovery of activation metals for accelerated hydrogen generation from aluminum and seawater[J]. Cell Reports Physical Science, 2024, 5(8): 102121. DOI: 10.1016/j.xcrp.2024.102121. |
[91] | TAMADA M. Current status of technology for collection of uranium from seawater[C]//International Seminar on Nuclear War and Planetary Emergencies-42nd Session. Erice, Italy. WORLD SCIENTIFIC, 2010: 243-252.. DOI: 10.1142/9789814327503_0026. |
[92] | ZHANG W S, XIN Y Y, FA Y, et al. SA-DNA hydrogel microspheres for Ultra-Selective uranyl (VI) extraction from seawater[J]. Chemical Engineering Journal, 2024, 495: 153690. DOI: 10.1016/j.cej.2024.153690. |
[93] | AWATI A, YANG R, SHI T, et al. Interfacial super-assembly of vacancy engineered ultrathin-nanosheets toward nanochannels for smart ion transport and salinity gradient power conversion[J]. Angewandte Chemie International Edition, 2024, 63(32): e2024 07491. DOI: 10.1002/anie.202407491. |
[94] | XIONG M Y, SONG K W, LEBURTON J P. Ionic coulomb drag in nanofluidic semiconductor channels for energy harvest[J]. Nano Energy, 2023, 117: 108860. DOI: 10.1016/j.nanoen.2023.108860. |
[95] | FUKUZUMI S, LEE Y M, NAM W. Fuel production from seawater and fuel cells using seawater[J]. ChemSusChem, 2017, 10(22): 4264-4276. DOI: 10.1002/cssc.201701381. |
[96] | ZHENG W, ZHENG X R, LU Q, et al. Spontaneous anchoring Cl into α-Co(OH)2 as efficient and stable oxygen reduction electrocatalysts for seawater battery[J]. Rare Metals, 2024, 43(7): 3074-3083. DOI: 10.1007/s12598-023-02577-6. |
[97] | YANG S. Other potential applications for biomass-derived porous carbon[M]. CRC Press, 2024: 217-247. |
[98] | JANCSó G. Isotope effects, Isotope separation and isotope fractionation[J]. Radiochemistry Nuclear Chemistry, 2009: 110. |
[99] | FERRONSKY V I, POLYAKOV V A. Isotopes of the earth's hydrosphere[M]. Springer Science & Business Media, 2012. |
[100] | CHEN D Y, LI Y, ZHAO X Y, et al. Self-standing porous aromatic framework electrodes for efficient electrochemical uranium extraction[J]. ACS Central Science, 2023, 9(12): 2326-2332. DOI: 10.1021/acscentsci.3c01291. |
[101] | UMMALYMA S B, SUKUMARAN R K, PANDEY A. Evaluation of freshwater microalgal isolates for growth and oil production in seawater medium[J]. Waste and Biomass Valorization, 2020, 11(1): 223-230. DOI: 10.1007/s12649-018-0393-8. |
[102] | DRAB D M, WILLAUER H D, OLSEN M T, et al. Hydrocarbon synthesis from carbon dioxide and hydrogen: A two-step process[J]. Energy & Fuels, 2013, 27(11): 6348-6354. DOI: 10. 1021/ef4011115. |
[103] | VERDEGAAL W M, BECKER S, VON OLSHAUSEN C. Power-to-liquids: Synthetisches rohöl aus CO2, wasser und sonne[J]. Chemie Ingenieur Technik, 2015, 87(4): 340-346. DOI: 10.1002/cite.201400098. |
[104] | JIA Z J, WANG B G, SONG S Q, et al. Blue energy: Current technologies for sustainable power generation from water salinity gradient[J]. Renewable and Sustainable Energy Reviews, 2014, 31: 91-100. DOI: 10.1016/j.rser.2013.11.049. |
[105] | WU T, JIANG L, CUI G. Status and trends of energy power supply technologies for underwater equipment[J]. Bulletin of Chinese Academy of Sciences, 2022, 37(7): 898-909. |
[106] | PRIESTER P, GRUSICH A, TORTORA P R. Renewable energy and storage implementation in naval station pearl harbor[J]. Renewable energy, 2015: |
[107] | WEBER J A, WENZHONG-GAO D, ZHAI J Z. Case study: Small-scale hybrid integrated renewable energy system (HI-RES): Emergency mobile backup power generation station[C]//2013 IEEE Green Technologies Conference (GreenTech). April 4-5, 2013, Denver, CO, USA. IEEE, 2013: 42-48. DOI: 10.1109/GreenTech.2013.15. |
[108] | FISH R. Design and modeling of hybrid microgrids in arctic environments[D]. Monterey, CA: Naval Postgraduate School, 2020. |
[109] | SOLDI G, GAGLIONE D, RAPONI S, et al. Monitoring of critical undersea infrastructures: The nord stream and other recent case studies[J]. IEEE Aerospace and Electronic Systems Magazine, 2023, 38(10): 4-24. DOI: 10.1109/MAES.2023. 3285075. |
[110] | MUUGA E, LOIK R, KAUP G H, et al. Security threats to the undersea connections related critical infrastructure of the baltic states: The baltic sea in the focus of hybrid warfare[M]. Tallinn: Estonian Academy of Security Sciences, 2005. |
[1] | 吴华伟, 何成泽, 洪强, 周小高, 李明金, 顾亚娟. 基于IFFRLS-IMMUKF的商用车磷酸铁锂电池SOC估算[J]. 储能科学与技术, 2025, 14(10): 3996-4008. |
[2] | 王宇航, 苑清扬, 吴浩, 张博, 赵鑫, 龚洋凯, 王宁生. 软包电池组大倍率放电浸没冷却系统实验[J]. 储能科学与技术, 2025, 14(10): 3730-3741. |
[3] | 吕福祥, 陆晓峰, 李洪峰, 朱晓磊. “散-储”一体化的电池热管理系统研究[J]. 储能科学与技术, 2025, 14(10): 3677-3686. |
[4] | 韩梦辉, 张华, 吴竞, 孙新睿. 全固态锂金属电池力-电耦合膨胀行为机理[J]. 储能科学与技术, 2025, 14(10): 4009-4019. |
[5] | 彭宇翔, 高立克, 李勇琦, 唐彬, 罗传胜. 钠离子电池储能系统产热特性与热管理策略优化[J]. 储能科学与技术, 2025, 14(10): 3764-3773. |
[6] | 孙华章, 万红利, 姚霞银. Na-In/Na2S界面层实现稳定的全固态钠电池[J]. 储能科学与技术, 2025, 14(10): 3697-3704. |
[7] | 包文彬, 龚国庆. 在纳米骨架和人工隔膜形貌优化下固态电池锂枝晶生长的相场法研究[J]. 储能科学与技术, 2025, 14(10): 3687-3696. |
[8] | 李昌豪, 曹志成, 汪书苹, 谢恒, 张炜鑫, 曹元成. 基于时序模式注意力机制和孤立森林的电池过充热失控预警方法研究[J]. 储能科学与技术, 2025, 14(10): 3742-3754. |
[9] | 王腾飞, 高保彬, 原白云, 许晴晴, 陈杰, 王燕. 基于数智化平台的新型储能产业链发展模式与路径分析[J]. 储能科学与技术, 2025, 14(10): 3859-3871. |
[10] | 马斌, 张宾, 韩锦立. 基于储能技术的轨道电车能源回收与控制策略[J]. 储能科学与技术, 2025, 14(10): 4040-4042. |
[11] | 包新宇, 孔祥栋, 吕桃林, 朱志成, 韩雪冰, 来鑫, 郑岳久, 孙涛. 基于产线大数据的电池内阻预测及快速分选方法[J]. 储能科学与技术, 2025, 14(9): 3541-3551. |
[12] | 白晓宇, 筵亚静, 张志荣, 孔令丽. 复合石墨锂离子电池性能研究[J]. 储能科学与技术, 2025, 14(9): 3259-3268. |
[13] | 徐成善, 李涵, 王炎, 卢兰光, 冯旭宁, 欧阳明高. 双层储能电池火蔓延特性及触发过程能量传递机制研究[J]. 储能科学与技术, 2025, 14(9): 3552-3563. |
[14] | 邓拓, 周海平, 刘煜, 刘畅, 李梓恺, 吴孟强. 化学气相沉积法制备硅碳负极的研究进展[J]. 储能科学与技术, 2025, 14(9): 3354-3372. |
[15] | 陈峥, 胡竞元, 赵志刚, 申江卫, 夏雪磊, 魏福星. 双体系混装电池组热特性研究及风冷散热结构优化[J]. 储能科学与技术, 2025, 14(9): 3463-3475. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||