[1] |
李想, 刘德重, 袁开, 等. 用于低温锂金属电池的固态电解质技术研究进展[J]. 储能科学与技术, 2024, 13(7): 2327-2347. DOI: 10.19799/j.cnki.2095-4239.2024.0323.
|
|
LI X, LIU D Z, YUAN K, et al. Solid-state electrolyte for low-temperature lithium metal batteries[J]. Energy Storage Science and Technology, 2024, 13(7): 2327-2347. DOI: 10.19799/j.cnki. 2095-4239.2024.0323.
|
[2] |
ZHENG Y, ZHANG S, MA J, et al. Codependent failure mechanisms between cathode and anode in solid state lithium metal batteries: Mediated by uneven ion flux[J]. Science Bulletin, 2023, 68(8): 813-825. DOI: 10.1016/j.scib.2023.03.021.
|
[3] |
LIU Y C, LU Y, ZHANG Z L, et al. High-areal-capacity and long-life sulfide-based all-solid-state lithium battery achieved by regulating surface-to-bulk oxygen activity[J]. Journal of Energy Chemistry, 2025, 101: 795-807. DOI: 10.1016/j.jechem.2024.10.022.
|
[4] |
SUNG J, HEO J, KIM D H, et al. Recent advances in all-solid-state batteries for commercialization[J]. Materials Chemistry Frontiers, 2024, 8(8): 1861-1887. DOI: 10.1039/D3QM01171B.
|
[5] |
HUANG J, LI C, JIANG D K, et al. Solid-state electrolytes for lithium metal batteries: State-of-the-art and perspectives[J]. Advanced Functional Materials, 2025, 35(1): 2411171. DOI: 10. 1002/adfm.202411171.
|
[6] |
YUAN C H, LU W Q, XU J. Electrochemical-mechanical coupling failure mechanism of composite cathode in all-solid-state batteries[J]. Energy Storage Materials, 2023, 60: 102834. DOI: 10.1016/j.ensm.2023.102834.
|
[7] |
肖子信, 张泓, 徐林. 纳米线调控固态电池离子输运与界面[J]. 储能科学与技术, 2025, 14(3): 1026-1039. DOI: 10.19799/j.cnki.2095-4239.2024.1177.
|
|
XIAO Z X, ZHANG H, XU L. Nanowires modulating ion transport and interfaces in solidstate lithium batteries[J]. Energy Storage Science and Technology, 2025, 14(3): 1026-1039. DOI: 10.19799/j.cnki.2095-4239.2024.1177.
|
[8] |
王钦, 张艳岗, 梁君飞, 等. 硅基固态电池的界面失效挑战与应对策略[J]. 储能科学与技术, 2025, 14(2): 570-582. DOI: 10.19799/j.cnki.2095-4239.2024.0774.
|
|
WANG Q, ZHANG Y G, LIANG J F, et al. Challenges and strategies for interface failures in siliconbased solid-state batteries[J]. Energy Storage Science and Technology, 2025, 14(2): 570-582. DOI: 10.19799/j.cnki.2095-4239.2024.0774.
|
[9] |
YUAN C H, XU J. Quantitative regulation of electrochemical-mechanical performance of composite cathode in all-solid-state batteries[J]. Nano Energy, 2024, 121: 109193. DOI: 10.1016/j.nanoen.2023.109193.
|
[10] |
WANG K J, SONG X, CHEN Z P, et al. Electrochemical-mechanical coupled interfacial degradation model of Ternary polymer composite cathodes in all-solid-state batteries[J]. Journal of Power Sources, 2024, 623: 235452. DOI: 10.1016/j.jpowsour. 2024.235452.
|
[11] |
PENG Y S, HAO F. Mechano-electrochemical coupling in flexible all-solid-state lithium metal batteries[J]. Journal of Energy Storage, 2023, 57: 106195. DOI: 10.1016/j.est.2022.106195.
|
[12] |
BURROWS L. Solid state battery design charges in minutes, lasts for thousands of cycles [J]. SEAS, 2024.
|
[13] |
SUN Y Y, LI F, HOU P Y. Research progress on the interfaces of solid-state lithium metal batteries[J]. Journal of Materials Chemistry A, 2021, 9(15): 9481-9505. DOI: 10.1039/D1TA00467K.
|
[14] |
WANG S, REN D S, XU C S, et al. Lithium plating induced volume expansion overshoot of lithium-ion batteries: Experimental analysis and modeling[J]. Journal of Power Sources, 2024, 593: 233946. DOI: 10.1016/j.jpowsour.2023.233946.
|
[15] |
GU J B, CHEN X X, HE Z F, et al. Decoding internal stress-induced micro-short circuit events in sulfide-based all-solid-state Li-metal batteries via operando pressure measurements[J]. Advanced Energy Materials, 2023, 13(47): 2302643. DOI: 10. 1002/aenm.202302643.
|
[16] |
SANG J W, TANG B, QIU Y, et al. How does stacking pressure affect the performance of solid electrolytes and all-solid-state lithium metal batteries?[J]. Energy & Environmental Materials, 2024, 7(4): e12670. DOI: 10.1002/eem2.12670.
|
[17] |
ZHANG Y H, ZHAO P Y, NIE Q N, et al. Enabling 420 Wh kg-1 stable lithium-metal pouch cells by lanthanum doping[J]. Advanced Materials, 2023, 35(15): e2211032. DOI: 10.1002/adma.202211032.
|
[18] |
LEONARD A, PLANDEN B, LUKOW K, et al. Investigation of constant stack pressure on lithium-ion battery performance[J]. Journal of Energy Storage, 2023, 72: 108422. DOI: 10.1016/j.est.2023.108422.
|
[19] |
HAN S C, ALI M, KIM Y J, et al. Unraveling electrochemo-mechanical aspects of core-shell composite cathode for sulfide based all-solid-state batteries[J]. Journal of Materials Chemistry A, 2024, 12(37): 24896-24905. DOI: 10.1039/D4TA04063E.
|
[20] |
WANG J C, CHEN L Q, LI H, et al. Anode interfacial issues in solid-state Li batteries: Mechanistic understanding and mitigating strategies[J]. Energy & Environmental Materials, 2023, 6(4): e12613. DOI: 10.1002/eem2.12613.
|
[21] |
MACHÍN A, MORANT C, MÁRQUEZ F. Advancements and challenges in solid-state battery technology: An in-depth review of solid electrolytes and anode innovations[J]. Batteries, 2024, 10(1): 29. DOI: 10.3390/batteries10010029.
|
[22] |
JHAN C Y, WANG P S, SUNG S H, et al. Effects of volume-confinement on lithium-ion battery with silicon-based anode[J]. Materials Today Communications, 2024, 39: 108578. DOI: 10. 1016/j.mtcomm.2024.108578.
|
[23] |
HOSSAIN M H, ISLAM M A, CHOWDHURY M A, et al. Prospects and challenges of anode materials for lithium-ion batteries—A review[J]. Cleaner Energy Systems, 2024, 9: 100145. DOI: 10. 1016/j.cles.2024.100145.
|
[24] |
HENNEQUART B, PLATONOVA M, CHOMETON R, et al. Atmospheric-pressure operation of all-solid-state batteries enabled by halide solid electrolyte[J]. ACS Energy Letters, 2024, 9(2):7.DOI:10.1021/acsenergylett.3c02513.
|
[25] |
LEE C, HAN S Y, LEWIS J A, et al. Stack pressure measurements to probe the evolution of the lithium-solid-state electrolyte interface[J]. ACS Energy Letters, 2021, 6(9): 3261-3269. DOI: 10.1021/acsenergylett.1c01395.
|
[26] |
ZHANG J X, FU J M, LU P S, et al. Challenges and strategies of low-pressure all-solid-state batteries[J]. Advanced Materials, 2025, 37(6): 2413499. DOI: 10.1002/adma.202413499.
|
[27] |
MÖRSEBURG S, BOENKE T, HENZE K, et al. A metallic lithium anode for solid-state batteries with low volume change by utilizing a modified porous carbon host[J]. Carbon, 2025, 232: 119821. DOI: 10.1016/j.carbon.2024.119821.
|
[28] |
CHEN Y M, WANG Z Q, LI X Y, et al. Li metal deposition and stripping in a solid-state battery via Coble creep[J]. Nature, 2020, 578(7794): 251-255. DOI: 10.1038/s41586-020-1972-y.
|
[29] |
CHEN G F, GUAN L, CHEN Y, et al. Optimization effect on the interfacial impedance and contact stress of the ASSLB with porous polymer buffer layer[J]. The Journal of Physical Chemistry C, 2024, 128(47): 20407-20422. DOI: 10.1021/acs.jpcc.4c05666.
|
[30] |
LEE C, KIM J Y, BAE K Y, et al. Enhancing electrochemomechanics: How stack pressure regulation affects all-solid-state batteries[J]. Energy Storage Materials, 2024, 66: 103196. DOI: 10.1016/j.ensm.2024.103196.
|
[31] |
SHAO Y Q, LIU H L, SHAO X D, et al. A fully coupled mechano-electrochemical model for all-solid-state Li-ion batteries: An optimal strategy for controlling interfacial contact using internal stress generated by electrode expansion[J]. Electrochimica Acta, 2023, 443: 141958. DOI: 10.1016/j.electacta.2023.141958.
|
[32] |
LI X Y, ZHANG Z Y, GONG L L, et al. Modelling and analysis of the volume change behaviors of Li-ion batteries with silicon-graphene composite electrodes[J]. Chemical Engineering Journal, 2023, 470: 144188. DOI: 10.1016/j.cej.2023.144188.
|
[33] |
LEE Y K, SUNG C, KIM J, et al. Multiphysics modeling of the influence of initial pressure on mechanical and electrochemical performance of all-solid-state batteries[J]. Journal of Energy Storage, 2024, 82: 110431. DOI: 10.1016/j.est.2024.110431.
|
[34] |
WANG L B, YIN S, XU J. A detailed computational model for cylindrical lithium-ion batteries under mechanical loading: From cell deformation to short-circuit onset[J]. Journal of Power Sources, 2019, 413: 284-292. DOI: 10.1016/j.jpowsour.2018.12.059.
|
[35] |
SONG Y B, KWAK H, CHO W, et al. Electrochemo-mechanical effects as a critical design factor for all-solid-state batteries[J]. Current Opinion in Solid State and Materials Science, 2022, 26(1): 100977. DOI: 10.1016/j.cossms.2021.100977.
|
[36] |
ZHAO Q, DENG Y, UTOMO N W, et al. On the crystallography and reversibility of lithium electrodeposits at ultrahigh capacity[J]. Nature Communications, 2021, 12: 6034. DOI: 10.1038/s41467-021-26143-9.
|
[37] |
MASIAS A, FELTEN N, SAKAMOTO J. Characterizing the mechanical behavior of lithium in compression[J]. Journal of Materials Research, 2021, 36(3): 729-739. DOI: 10.1557/s43578-020-00028-x.
|
[38] |
LIU S J, ZHOU L, HAN J, et al. Super long-cycling all-solid-state battery with thin Li6PS5Cl-based electrolyte[J]. Advanced Energy Materials, 2022, 12(25): 2270105. DOI: 10.1002/aenm.202270105.
|
[39] |
GU J B, CHEN X X, MA R Q, et al. The insight of micro-short circuits caused by electrochemo-mechanical stress crosstalk in all-solid-state Li metal batteries[J]. Energy Storage Materials, 2023, 63: 103052. DOI: 10.1016/j.ensm.2023.103052.
|
[40] |
HUANG P Y, GAO L T, GUO Z S. Electrochemo-mechanical response of all solid-state batteries: Finite element simulations supported by image-based 3D reconstruction of X-ray microscopy tomography[J]. Electrochimica Acta, 2023, 463: 142873. DOI: 10. 1016/j.electacta.2023.142873.
|
[41] |
ZHAO Y F, QIANG Z M, NING Y B, et al. Mechanical issues in sulfide-based all-solid-state batteries: Origin, monitoring, and intelligent analysis[J]. Nano Energy, 2024, 131: 110295. DOI: 10. 1016/j.nanoen.2024.110295.
|