储能科学与技术 ›› 2025, Vol. 14 ›› Issue (10): 4009-4019.doi: 10.19799/j.cnki.2095-4239.2025.0271
收稿日期:2025-03-27
修回日期:2025-04-17
出版日期:2025-10-28
发布日期:2025-10-20
通讯作者:
张华
E-mail:13004024413@163.com;chinafeihong@163.com
作者简介:韩梦辉(2001—),男,硕士研究生,研究方向为全固态锂电池安全,E-mail:13004024413@163.com;
基金资助:
Menghui HAN1,2(
), Hua ZHANG1(
), Jing WU2, Xinrui SUN1,2
Received:2025-03-27
Revised:2025-04-17
Online:2025-10-28
Published:2025-10-20
Contact:
Hua ZHANG
E-mail:13004024413@163.com;chinafeihong@163.com
摘要:
全固态锂金属电池(ASSLMBs)的膨胀行为引起其内部固-固界面失稳,是导致其循环稳定性差的主要原因之一。适当的堆叠压力可以增加ASSLMBs中电极与固态电解质(SE)之间的接触,显著提高电池结构完整性。然而,初始堆叠压力使得电池在充放电过程中的变形空间有限,而巨大的体积膨胀容易导致电池内部出现机械损伤。为此,建立了一个二维轴对称力-电耦合的均质电池模型,分别采用NCM811材料作为正极,Li6PS5Cl为固态电解质,锂金属为负极,将电池模型限制在充放电初始的空间内以探究调节电池内部影响膨胀应力的因素。结果表明,较低杨氏模量的正极能够明显缓解膨胀应力的增加,采用300 MPa杨氏模量的正极可以将电池在充放电过程中的最大膨胀应力降低为2.89 MPa,正极最大应力为12.5 MPa;改变锂金属负极的厚度(20~200 μm)可以将SE-负极界面处的锂沉积引起的巨大体积应变通过锂金属形变来减轻,使负极的体积应变有效降低,进一步减少充电过程中产生的膨胀应力。讨论结果有力地解释了影响电池充放电过程中内部膨胀应力产生的主要因素,并为下一代ASSLMBs的制造提供了良好且可行的设计方案。
中图分类号:
韩梦辉, 张华, 吴竞, 孙新睿. 全固态锂金属电池力-电耦合膨胀行为机理[J]. 储能科学与技术, 2025, 14(10): 4009-4019.
Menghui HAN, Hua ZHANG, Jing WU, Xinrui SUN. Research on the mechanism of electro-mechanical coupling expansion behavior in all-solid-state lithium metal batteries[J]. Energy Storage Science and Technology, 2025, 14(10): 4009-4019.
表1
电池模型使用的参数"
| 参数 | 符号 | 数值 | 参考文献 |
|---|---|---|---|
| 正极杨氏模量 | Ecat | 720 MPa | [ |
| SE杨氏模量 | ESE | 22.1 GPa | [ |
| 锂金属密度 | ρLi | 534 kg/m3 | [ |
| 锂金属摩尔质量 | MLi | 6.94 kg/mol | — |
| 锂初始屈服应力 | σys0 | 2 MPa | [ |
| 锂各向同性切线模量 | ETiso | 10 MPa | [ |
| 负极电荷转移系数 | αa | 0.5 | — |
| 正极电荷转移系数 | αc | 0.5 | — |
| 正极初始浓度 | cs,0 | 49970 mol/m3 | — |
| 正极最大锂离子浓度 | cs,max | 50060 mol/m3 | — |
| 固态电解质电导率 | kl | 0.39 S/m | [ |
| 正极厚度 | Lcat | 50 μm | — |
| 电解质厚度 | Lse | 20 μm | — |
| 负极厚度 | Lan | 50 μm | — |
| 电池半径 | Rcell | 150 μm | — |
| [1] | 李想, 刘德重, 袁开, 等. 用于低温锂金属电池的固态电解质技术研究进展[J]. 储能科学与技术, 2024, 13(7): 2327-2347. DOI: 10.19799/j.cnki.2095-4239.2024.0323. |
| LI X, LIU D Z, YUAN K, et al. Solid-state electrolyte for low-temperature lithium metal batteries[J]. Energy Storage Science and Technology, 2024, 13(7): 2327-2347. DOI: 10.19799/j.cnki. 2095-4239.2024.0323. | |
| [2] | ZHENG Y, ZHANG S, MA J, et al. Codependent failure mechanisms between cathode and anode in solid state lithium metal batteries: Mediated by uneven ion flux[J]. Science Bulletin, 2023, 68(8): 813-825. DOI: 10.1016/j.scib.2023.03.021. |
| [3] | LIU Y C, LU Y, ZHANG Z L, et al. High-areal-capacity and long-life sulfide-based all-solid-state lithium battery achieved by regulating surface-to-bulk oxygen activity[J]. Journal of Energy Chemistry, 2025, 101: 795-807. DOI: 10.1016/j.jechem.2024.10.022. |
| [4] | SUNG J, HEO J, KIM D H, et al. Recent advances in all-solid-state batteries for commercialization[J]. Materials Chemistry Frontiers, 2024, 8(8): 1861-1887. DOI: 10.1039/D3QM01171B. |
| [5] | HUANG J, LI C, JIANG D K, et al. Solid-state electrolytes for lithium metal batteries: State-of-the-art and perspectives[J]. Advanced Functional Materials, 2025, 35(1): 2411171. DOI: 10. 1002/adfm.202411171. |
| [6] | YUAN C H, LU W Q, XU J. Electrochemical-mechanical coupling failure mechanism of composite cathode in all-solid-state batteries[J]. Energy Storage Materials, 2023, 60: 102834. DOI: 10.1016/j.ensm.2023.102834. |
| [7] | 肖子信, 张泓, 徐林. 纳米线调控固态电池离子输运与界面[J]. 储能科学与技术, 2025, 14(3): 1026-1039. DOI: 10.19799/j.cnki.2095-4239.2024.1177. |
| XIAO Z X, ZHANG H, XU L. Nanowires modulating ion transport and interfaces in solidstate lithium batteries[J]. Energy Storage Science and Technology, 2025, 14(3): 1026-1039. DOI: 10.19799/j.cnki.2095-4239.2024.1177. | |
| [8] | 王钦, 张艳岗, 梁君飞, 等. 硅基固态电池的界面失效挑战与应对策略[J]. 储能科学与技术, 2025, 14(2): 570-582. DOI: 10.19799/j.cnki.2095-4239.2024.0774. |
| WANG Q, ZHANG Y G, LIANG J F, et al. Challenges and strategies for interface failures in siliconbased solid-state batteries[J]. Energy Storage Science and Technology, 2025, 14(2): 570-582. DOI: 10.19799/j.cnki.2095-4239.2024.0774. | |
| [9] | YUAN C H, XU J. Quantitative regulation of electrochemical-mechanical performance of composite cathode in all-solid-state batteries[J]. Nano Energy, 2024, 121: 109193. DOI: 10.1016/j.nanoen.2023.109193. |
| [10] | WANG K J, SONG X, CHEN Z P, et al. Electrochemical-mechanical coupled interfacial degradation model of Ternary polymer composite cathodes in all-solid-state batteries[J]. Journal of Power Sources, 2024, 623: 235452. DOI: 10.1016/j.jpowsour. 2024.235452. |
| [11] | PENG Y S, HAO F. Mechano-electrochemical coupling in flexible all-solid-state lithium metal batteries[J]. Journal of Energy Storage, 2023, 57: 106195. DOI: 10.1016/j.est.2022.106195. |
| [12] | BURROWS L. Solid state battery design charges in minutes, lasts for thousands of cycles [J]. SEAS, 2024. |
| [13] | SUN Y Y, LI F, HOU P Y. Research progress on the interfaces of solid-state lithium metal batteries[J]. Journal of Materials Chemistry A, 2021, 9(15): 9481-9505. DOI: 10.1039/D1TA00467K. |
| [14] | WANG S, REN D S, XU C S, et al. Lithium plating induced volume expansion overshoot of lithium-ion batteries: Experimental analysis and modeling[J]. Journal of Power Sources, 2024, 593: 233946. DOI: 10.1016/j.jpowsour.2023.233946. |
| [15] | GU J B, CHEN X X, HE Z F, et al. Decoding internal stress-induced micro-short circuit events in sulfide-based all-solid-state Li-metal batteries via operando pressure measurements[J]. Advanced Energy Materials, 2023, 13(47): 2302643. DOI: 10. 1002/aenm.202302643. |
| [16] | SANG J W, TANG B, QIU Y, et al. How does stacking pressure affect the performance of solid electrolytes and all-solid-state lithium metal batteries?[J]. Energy & Environmental Materials, 2024, 7(4): e12670. DOI: 10.1002/eem2.12670. |
| [17] | ZHANG Y H, ZHAO P Y, NIE Q N, et al. Enabling 420 Wh kg-1 stable lithium-metal pouch cells by lanthanum doping[J]. Advanced Materials, 2023, 35(15): e2211032. DOI: 10.1002/adma.202211032. |
| [18] | LEONARD A, PLANDEN B, LUKOW K, et al. Investigation of constant stack pressure on lithium-ion battery performance[J]. Journal of Energy Storage, 2023, 72: 108422. DOI: 10.1016/j.est.2023.108422. |
| [19] | HAN S C, ALI M, KIM Y J, et al. Unraveling electrochemo-mechanical aspects of core-shell composite cathode for sulfide based all-solid-state batteries[J]. Journal of Materials Chemistry A, 2024, 12(37): 24896-24905. DOI: 10.1039/D4TA04063E. |
| [20] | WANG J C, CHEN L Q, LI H, et al. Anode interfacial issues in solid-state Li batteries: Mechanistic understanding and mitigating strategies[J]. Energy & Environmental Materials, 2023, 6(4): e12613. DOI: 10.1002/eem2.12613. |
| [21] | MACHÍN A, MORANT C, MÁRQUEZ F. Advancements and challenges in solid-state battery technology: An in-depth review of solid electrolytes and anode innovations[J]. Batteries, 2024, 10(1): 29. DOI: 10.3390/batteries10010029. |
| [22] | JHAN C Y, WANG P S, SUNG S H, et al. Effects of volume-confinement on lithium-ion battery with silicon-based anode[J]. Materials Today Communications, 2024, 39: 108578. DOI: 10. 1016/j.mtcomm.2024.108578. |
| [23] | HOSSAIN M H, ISLAM M A, CHOWDHURY M A, et al. Prospects and challenges of anode materials for lithium-ion batteries—A review[J]. Cleaner Energy Systems, 2024, 9: 100145. DOI: 10. 1016/j.cles.2024.100145. |
| [24] | HENNEQUART B, PLATONOVA M, CHOMETON R, et al. Atmospheric-pressure operation of all-solid-state batteries enabled by halide solid electrolyte[J]. ACS Energy Letters, 2024, 9(2):7.DOI:10.1021/acsenergylett.3c02513. |
| [25] | LEE C, HAN S Y, LEWIS J A, et al. Stack pressure measurements to probe the evolution of the lithium-solid-state electrolyte interface[J]. ACS Energy Letters, 2021, 6(9): 3261-3269. DOI: 10.1021/acsenergylett.1c01395. |
| [26] | ZHANG J X, FU J M, LU P S, et al. Challenges and strategies of low-pressure all-solid-state batteries[J]. Advanced Materials, 2025, 37(6): 2413499. DOI: 10.1002/adma.202413499. |
| [27] | MÖRSEBURG S, BOENKE T, HENZE K, et al. A metallic lithium anode for solid-state batteries with low volume change by utilizing a modified porous carbon host[J]. Carbon, 2025, 232: 119821. DOI: 10.1016/j.carbon.2024.119821. |
| [28] | CHEN Y M, WANG Z Q, LI X Y, et al. Li metal deposition and stripping in a solid-state battery via Coble creep[J]. Nature, 2020, 578(7794): 251-255. DOI: 10.1038/s41586-020-1972-y. |
| [29] | CHEN G F, GUAN L, CHEN Y, et al. Optimization effect on the interfacial impedance and contact stress of the ASSLB with porous polymer buffer layer[J]. The Journal of Physical Chemistry C, 2024, 128(47): 20407-20422. DOI: 10.1021/acs.jpcc.4c05666. |
| [30] | LEE C, KIM J Y, BAE K Y, et al. Enhancing electrochemomechanics: How stack pressure regulation affects all-solid-state batteries[J]. Energy Storage Materials, 2024, 66: 103196. DOI: 10.1016/j.ensm.2024.103196. |
| [31] | SHAO Y Q, LIU H L, SHAO X D, et al. A fully coupled mechano-electrochemical model for all-solid-state Li-ion batteries: An optimal strategy for controlling interfacial contact using internal stress generated by electrode expansion[J]. Electrochimica Acta, 2023, 443: 141958. DOI: 10.1016/j.electacta.2023.141958. |
| [32] | LI X Y, ZHANG Z Y, GONG L L, et al. Modelling and analysis of the volume change behaviors of Li-ion batteries with silicon-graphene composite electrodes[J]. Chemical Engineering Journal, 2023, 470: 144188. DOI: 10.1016/j.cej.2023.144188. |
| [33] | LEE Y K, SUNG C, KIM J, et al. Multiphysics modeling of the influence of initial pressure on mechanical and electrochemical performance of all-solid-state batteries[J]. Journal of Energy Storage, 2024, 82: 110431. DOI: 10.1016/j.est.2024.110431. |
| [34] | WANG L B, YIN S, XU J. A detailed computational model for cylindrical lithium-ion batteries under mechanical loading: From cell deformation to short-circuit onset[J]. Journal of Power Sources, 2019, 413: 284-292. DOI: 10.1016/j.jpowsour.2018.12.059. |
| [35] | SONG Y B, KWAK H, CHO W, et al. Electrochemo-mechanical effects as a critical design factor for all-solid-state batteries[J]. Current Opinion in Solid State and Materials Science, 2022, 26(1): 100977. DOI: 10.1016/j.cossms.2021.100977. |
| [36] | ZHAO Q, DENG Y, UTOMO N W, et al. On the crystallography and reversibility of lithium electrodeposits at ultrahigh capacity[J]. Nature Communications, 2021, 12: 6034. DOI: 10.1038/s41467-021-26143-9. |
| [37] | MASIAS A, FELTEN N, SAKAMOTO J. Characterizing the mechanical behavior of lithium in compression[J]. Journal of Materials Research, 2021, 36(3): 729-739. DOI: 10.1557/s43578-020-00028-x. |
| [38] | LIU S J, ZHOU L, HAN J, et al. Super long-cycling all-solid-state battery with thin Li6PS5Cl-based electrolyte[J]. Advanced Energy Materials, 2022, 12(25): 2270105. DOI: 10.1002/aenm.202270105. |
| [39] | GU J B, CHEN X X, MA R Q, et al. The insight of micro-short circuits caused by electrochemo-mechanical stress crosstalk in all-solid-state Li metal batteries[J]. Energy Storage Materials, 2023, 63: 103052. DOI: 10.1016/j.ensm.2023.103052. |
| [40] | HUANG P Y, GAO L T, GUO Z S. Electrochemo-mechanical response of all solid-state batteries: Finite element simulations supported by image-based 3D reconstruction of X-ray microscopy tomography[J]. Electrochimica Acta, 2023, 463: 142873. DOI: 10. 1016/j.electacta.2023.142873. |
| [41] | ZHAO Y F, QIANG Z M, NING Y B, et al. Mechanical issues in sulfide-based all-solid-state batteries: Origin, monitoring, and intelligent analysis[J]. Nano Energy, 2024, 131: 110295. DOI: 10. 1016/j.nanoen.2024.110295. |
| [1] | 张文杰, 任东生, 吴宇, 芮新宇, 刘翔, 冯旭宁, 卢兰光. 基于Li10GeP12S2 全固态电池关键材料的热稳定性[J]. 储能科学与技术, 2025, 14(6): 2193-2199. |
| [2] | 刘欢, 彭娜, 高清雯, 李文鹏, 杨志荣, 王景涛. 冠醚掺杂的聚合物固态电解质对全固态锂电池性能的影响[J]. 储能科学与技术, 2023, 12(8): 2401-2411. |
| [3] | 易永利, 于冉, 李武, 金翼, 戴哲仁. Mo, Al掺杂的Li7La3Zr2O12 基复合固态电解质的制备及全固态电池性能研究[J]. 储能科学与技术, 2023, 12(5): 1490-1499. |
| [4] | 周伟东, 黄秋, 谢晓新, 陈科君, 李薇, 邱介山. 固态锂电池聚合物电解质研究进展[J]. 储能科学与技术, 2022, 11(6): 1788-1805. |
| [5] | 林楠, KREWER Ulrike, ZAUSCH Jochen, STEINER Konrad, 林海波, 冯守华. 电化学能量储存和转换体系多物理场模型的建立及其应用[J]. 储能科学与技术, 2022, 11(4): 1149-1164. |
| [6] | 汤匀, 岳芳, 郭楷模, 李岚春, 柯旺松, 陈伟. 全固态锂电池技术发展趋势与创新能力分析[J]. 储能科学与技术, 2022, 11(1): 359-369. |
| [7] | 崔言明, 张秩华, 黄园桥, 林久, 姚霞银, 许晓雄. 全固态锂电池的电极制备与组装方法[J]. 储能科学与技术, 2021, 10(3): 836-847. |
| [8] | 蒋苗, 万红利, 刘高瞻, 翁伟, 王超, 姚霞银. Co0.1Fe0.9S2@Li7P3S11正极材料的制备及其在全固态锂电池中的性能[J]. 储能科学与技术, 2021, 10(3): 925-930. |
| [9] | 李茜, 郁亚娟, 张之琦, 王磊, 黄凯. 全固态锂电池的固态电解质进展与专利分析[J]. 储能科学与技术, 2021, 10(1): 77-86. |
| [10] | 吴敬华, 姚霞银. 基于硫化物固体电解质全固态锂电池界面特性研究进展[J]. 储能科学与技术, 2020, 9(2): 501-514. |
| [11] | 夏求应, 孙硕, 徐璟, 昝峰, 岳继礼, 夏晖. 薄膜型全固态锂电池[J]. 储能科学与技术, 2018, 7(4): 565-574. |
| [12] | 许晓雄,李泓. 为全固态锂电池“正名”[J]. 储能科学与技术, 2018, 7(1): 1-. |
| [13] | 赵嫣然,陈少杰,陶益成,陈晓添,姚霞银,许晓雄. 新型PEO/LPOS复合聚合物电解质的制备与性能研究[J]. 储能科学与技术, 2016, 5(5): 730-734. |
| [14] | 张 强1,2,姚霞银1,2,张洪周3,张联齐3,许晓雄1,2. 全固态锂电池界面的研究进展[J]. 储能科学与技术, 2016, 5(5): 659-667. |
| [15] | 李 泓1, 2,许晓雄3. 固态锂电池研发愿景和策略[J]. 储能科学与技术, 2016, 5(5): 607-614. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||