| [1] |
Global EV Outlook 2025[EB/OL], 2025. https://www.iea.org/reports/global-ev-outlook-2025.
|
| [2] |
韩佳洁, 苑清扬, 李郁, 等. 基于少测点数据驱动的大规模锂电池模组温度实时预测[J]. 工程科学学报, 2025, 47(5): 1103-1116. DOI: 10.13374/j.issn2095-9389.2024.05.23.002.
|
|
HAN J J, YUAN Q Y, LI Y, et al. Real-time temperature prediction of large-scale lithium battery module driven by data based on few measurement points[J]. Chinese Journal of Engineering, 2025, 47(5): 1103-1116. DOI: 10.13374/j.issn2095-9389.2024.05.23.002.
|
| [3] |
柳明贤, 李继标, 唐炳南, 等. 基于AUKF的可穿戴式设备用锂离子电池SOE在线估计方法[J]. 储能科学与技术, 2024, 13(5): 1688-1698. DOI: 10.19799/j.cnki.2095-4239.2023.0721.
|
|
LIU M X, LI J B, TANG B N, et al. Online state-of-energy estimation method for lithium-ion batteries used in wearable devices based on adaptive unscented Kalman filter[J]. Energy Storage Science and Technology, 2024, 13(5): 1688-1698. DOI: 10.19799/j.cnki.2095-4239.2023.0721.
|
| [4] |
郝雪祎. 基于粒子滤波优化的储能锂电池能量状态估算研究[D]. 绵阳: 西南科技大学, 2024. DOI: 10.27415/d.cnki.gxngc.2024.000775.
|
| [5] |
MA L, HU C, CHENG F. State of charge and state of energy estimation for lithium-ion batteries based on a long short-term memory neural network[J]. Journal of Energy Storage, 2021, 37: 102440. DOI: 10.1016/j.est.2021.102440.
|
| [6] |
李锦满, 李儒欢, 李浩南, 等. 基于无迹卡尔曼滤波的动力电池状态估计[J]. 电池, 2024, 54(3): 340-343. DOI:10.19535/j.1001-1579.2024.03.010.
|
|
LI J M, LI R H, LI H N, et al. State estimation for power battery based on unscented Kalman filter[J]. Dianchi(Battery Bimonthly), 2024, 54(3): 340-343. DOI:10.19535/j.1001-1579.2024.03.010.
|
| [7] |
ZHANG Y Z, HE H W, XIONG R. A data-driven based state of energy estimator of lithium-ion batteries used to supply electric vehicles[J]. Energy Procedia, 2015, 75: 1944-1949. DOI: 10.1016/j.egypro.2015.07.228.
|
| [8] |
JIA X Y, WANG S L, CAO W, et al. A novel genetic marginalized particle filter method for state of charge and state of energy estimation adaptive to multi-temperature conditions of lithium-ion batteries[J]. Journal of Energy Storage, 2023, 74: 109291. DOI: 10.1016/j.est.2023.109291.
|
| [9] |
WANG Y J, ZHANG C B, CHEN Z H. Model-based state-of-energy estimation of lithium-ion batteries in electric vehicles[J]. Energy Procedia, 2016, 88: 998-1004. DOI: 10.1016/j.egypro. 2016.06.125.
|
| [10] |
ZHANG W G, SHI W, MA Z Y. Adaptive unscented Kalman filter based state of energy and power capability estimation approach for lithium-ion battery[J]. Journal of Power Sources, 2015, 289: 50-62. DOI: 10.1016/j.jpowsour.2015.04.148.
|
| [11] |
LI X Y, XU J H, HONG J X, et al. State of energy estimation for a series-connected lithium-ion battery pack based on an adaptive weighted strategy[J]. Energy, 2021, 214: 118858. DOI: 10.1016/j.energy.2020.118858.
|
| [12] |
李晓涵, 孙磊, 马勇, 等. 基于Sage-Husa EKF算法的锂离子电池能量状态估计[J]. 储能科学与技术, 2022, 11 (11): 3603-3612. DOI: 10.19799/j.cnki.2095-4239.2022.0277.
|
|
LI X H, SUN L, MA Y, et al. Energy state estimation of lithium-ion batteries based on Sage-Husa EKF algorithm[J]. Energy Storage Science and Technology, 2022, 11 (11): 3603-3612. DOI: 10. 19799/j. cnki.2095-4239.2022.0277.
|
| [13] |
马彦, 郭则宣. 基于改进BPNN-MPF算法的锂离子电池SoE估计[J]. 吉林大学学报(工学版), 2023, 53(1): 263-272. DOI: 10.13229/j.cnki.jdxbgxb20210556.
|
|
MA Y, GUO Z X. SoE estimation of lithium-ion batteries based on improved BPNN-MPF algorithm[J]. Journal of Jilin University (Engineering and Technology Edition), 2023, 53(1): 263-272. DOI: 10.13229/j.cnki.jdxbgxb20210556.
|
| [14] |
赵英杰, 张闯, 刘素贞, 等. 基于电极等效电路模型的锂离子电池无析锂快充策略优化研究[J]. 电工技术学报, 2024, 39(18): 5868-5882. DOI: 10.19595/j.cnki.1000-6753.tces.230990.
|
|
ZHAO Y J, ZHANG C, LIU S Z, et al. Optimization of fast charging strategy for lithium-ion batteries without deposition based on electrode equivalent circuit model[J]. Transactions of China Electrotechnical Society, 2024, 39(18): 5868-5882. DOI: 10.19595/j.cnki.1000-6753.tces.230990.
|
| [15] |
SEYYEDABBASI A, KIANI F. Sand Cat swarm optimization: A nature-inspired algorithm to solve global optimization problems[J]. Engineering with Computers, 2023, 39(4): 2627-2651. DOI: 10.1007/s00366-022-01604-x.
|
| [16] |
HOU J, YANG Y, GAO T. A normal-gamma-based adaptive dual unscented Kalman filter for battery parameters and state-of-charge estimation with heavy-tailed measurement noise[J]. International Journal of Energy Research, 2020, 44(5): 3510-3525. DOI: 10. 1002/er.5042.
|
| [17] |
张敬艳, 修建娟, 董凯. 噪声非高斯条件下基于最大相关熵准则的容积滤波算法[J]. 兵器装备工程学报, 2021, 42(8): 245-250.
|
|
ZHANG J Y, XIU J J, DONG K. Maximum correntropy cubature Kalman filter under non-Gaussian noise[J]. Journal of Ordnance Equipment Engineering, 2021, 42(8): 245-250.
|
| [18] |
CALCE Battery Research Group. https://web.calce.umd.edu/batteries/data.htm.
|
| [19] |
宋禹霆, 周俊. 基于动态广义相关熵优化AEKF的锂电池SOC估计[J/OL]. 电源学报, 2025: 1-12. (2025-03-14). https://kns.cnki.net/KCMS/ detail/detail.aspx?filename=DYXB20250313002&dbname=CJFD&dbcode=CJFQ.
|
|
SONG Y T, ZHOU J. Lithium battery SOC estimation based on AEKF optimized by dynamic generalized correntropy[J/OL]. Journal of Power Supply, 2025: 1-12. (2025-03-14). https://kns.cnki.net/KCMS/detail/detail.aspx?filename=DYXB20250313002&dbname=CJFD&dbcode=CJFQ.
|
| [20] |
WU C L, HU W B, MENG J H, et al. State-of-charge estimation of lithium-ion batteries based on MCC-AEKF in non-Gaussian noise environment[J]. Energy, 2023, 274: 127316. DOI: 10.1016/j.energy.2023.127316.
|
| [21] |
WANG G Q, LI N, ZHANG Y G. Maximum correntropy unscented Kalman and information filters for non-Gaussian measurement noise[J]. Journal of the Franklin Institute, 2017, 354(18): 8659-8677. DOI: 10.1016/j.jfranklin.2017.10.023.
|