储能科学与技术 ›› 2025, Vol. 14 ›› Issue (4): 1424-1444.doi: 10.19799/j.cnki.2095-4239.2024.1078
温博华1(), 孟海军2, 陈勇龙1, 李晓辉3, 罗加严3, 林琳4, 张兰5
收稿日期:
2024-11-18
修回日期:
2024-12-10
出版日期:
2025-04-28
发布日期:
2025-05-20
通讯作者:
温博华
E-mail:bohuawen@sz.tsinghua.edu.cn
作者简介:
温博华(1988—),女,博士研究生,副教授,从事能源材料及微观界面分析研究,E-mail:bohuawen@sz.tsinghua.edu.cn。
基金资助:
Bohua WEN1(), Haijun MENG2, Yonglong CHEN1, Xiaohui LI3, Jiayan LUO3, Lin LIN4, Lan ZHANG5
Received:
2024-11-18
Revised:
2024-12-10
Online:
2025-04-28
Published:
2025-05-20
Contact:
Bohua WEN
E-mail:bohuawen@sz.tsinghua.edu.cn
摘要:
固态锂硫电池(SLSB)具有理论能量密度高、原材料成本低廉等优势,是最具前景的下一代储能器件之一。与采用液态电解液的锂硫电池(LSB)相比,SLSB不存在穿梭效应,且理论上具有更长的循环寿命,然而目前其相关基础理论、高比能电芯制备均面临诸多难题:如S8到Li2S的固-固转化过程、限制因素及相应的强化手段,高载量电极中电荷逾渗网络的构建方法及动态稳定策略,锂金属负极的枝晶抑制与应变调控等。上述问题需要结合电极材料设计、界面优化匹配结合先进的原位/非原位表征手段来逐步解析。本文综述了近年来固态锂硫电池正极、负极与先进表征手段的主要研究成果与重要进展,总结了SLSB在正极材料、电极结构方面与LSB的差异,发现保持电荷(离子、电子)高效导通、调控电极形变是其核心问题;负极方面,提升Li剥离过程的极限电流密度(CCD)是制约高比能固态锂硫电芯的关键挑战。基于此,相关表征技术、机理研究应适当向相关方向侧重,以支撑低应变电芯设计、加速高比能SLSB的发展与应用。
中图分类号:
温博华, 孟海军, 陈勇龙, 李晓辉, 罗加严, 林琳, 张兰. 高比能固态锂硫电池研究进展[J]. 储能科学与技术, 2025, 14(4): 1424-1444.
Bohua WEN, Haijun MENG, Yonglong CHEN, Xiaohui LI, Jiayan LUO, Lin LIN, Lan ZHANG. Research progress on high specific-energy solid-state lithium-sulfur batteries[J]. Energy Storage Science and Technology, 2025, 14(4): 1424-1444.
1 | BRUCE P G, FREUNBERGER S A, HARDWICK L J, et al. Li-O2 and Li-S batteries with high energy storage[J]. Nature Materials, 2011, 11(1): 19-29. DOI: 10.1038/nmat3191. |
2 | LEE J, ZHAO C, WANG C H, et al. Bridging the gap between academic research and industrial development in advanced all-solid-state lithium-sulfur batteries[J]. Chemical Society Reviews, 2024, 53(10): 5264-5290. DOI: 10.1039/d3cs00439b. |
3 | LIANG F, WANG S Z, LIANG Q, et al. Insight into all-solid-state Li-S batteries: Challenges, advances, and engineering design[J]. Advanced Energy Materials, 2024, 14(38): 2401959. DOI: 10.1002/aenm.202401959. |
4 | OHNO S, ZEIER W G. Toward practical solid-state lithium-sulfur batteries: Challenges and perspectives[J]. Accounts of Materials Research, 2021, 2(10): 869-880. DOI: 10.1021/accountsmr.1c00116. |
5 | CHEN Z R, LIANG Z T, ZHONG H Y, et al. Bulk/interfacial synergetic approaches enable the stable anode for high energy density all-solid-state lithium-sulfur batteries[J]. ACS Energy Letters, 2022, 7(8): 2761-2770. DOI: 10.1021/acsenergylett.2c01334. |
6 | HASSOUN J, SCROSATI B. Moving to a solid-state configuration: A valid approach to making lithium-sulfur batteries viable for practical applications[J]. Advanced Materials, 2010, 22(45): 5198-5201. DOI: 10.1002/adma.201002584. |
7 | YU X G, XIE J Y, YANG J, et al. All solid-state rechargeable lithium cells based on nano-sulfur composite cathodes[J]. Journal of Power Sources, 2004, 132(1/2): 181-186. DOI: 10.1016/j.jpowsour.2004.01.034. |
8 | HOSSEINI S M, VARZI A, ITO S, et al. High loading CuS-based cathodes for all-solid-state lithium sulfur batteries with enhanced volumetric capacity[J]. Energy Storage Materials, 2020, 27: 61-68. DOI: 10.1016/j.ensm.2020.01.022. |
9 | ZHOU J B, CHANDRAPPA M L H, TAN S, et al. Healable and conductive sulfur iodide for solid-state Li-S batteries[J]. Nature, 2024, 627(8003): 301-305. DOI: 10.1038/s41586-024-07101-z. |
10 | ESHETU G G, JUDEZ X, LI C M, et al. Lithium azide as an electrolyte additive for all-solid-state lithium-sulfur batteries[J]. Angewandte Chemie International Edition, 2017, 56(48): 15368-15372. DOI: 10.1002/anie.201709305. |
11 | SHENG O W, JIN C B, LUO J M, et al. Ionic conductivity promotion of polymer electrolyte with ionic liquid grafted oxides for all-solid-state lithium-sulfur batteries[J]. Journal of Materials Chemistry A, 2017, 5(25): 12934-12942. DOI: 10.1039/C7TA03699J. |
12 | TAO X Y, LIU Y Y, LIU W, et al. Solid-state lithium-sulfur batteries operated at 37 ℃ with composites of nanostructured Li7La3Zr2O12/carbon foam and polymer[J]. Nano Letters, 2017, 17(5): 2967-2972. DOI: 10.1021/acs.nanolett.7b00221. |
13 | CHEN L, FAN L Z. Dendrite-free Li metal deposition in all-solid-state lithium sulfur batteries with polymer-in-salt polysiloxane electrolyte[J]. Energy Storage Materials, 2018, 15: 37-45. DOI: 10.1016/j.ensm.2018.03.015. |
14 | ESHETU G G, JUDEZ X, LI C M, et al. Ultrahigh performance all solid-state lithium sulfur batteries: Salt anion's chemistry-induced anomalous synergistic effect[J]. Journal of the American Chemical Society, 2018, 140(31): 9921-9933. DOI: 10.1021/jacs. 8b04612. |
15 | SONG Y X, SHI Y, WAN J, et al. Direct tracking of the polysulfide shuttling and interfacial evolution in all-solid-state lithium-sulfur batteries: A degradation mechanism study[J]. Energy & Environmental Science, 2019, 12(8): 2496-2506. DOI: 10.1039/C9EE00578A. |
16 | LIU Y, LIU H W, LIN Y T, et al. Mechanistic investigation of polymer-based all-solid-state lithium/sulfur battery[J]. Advanced Functional Materials, 2021, 31(41): 2104863. DOI: 10.1002/adfm. 202104863. |
17 | HAKARI T, FUJITA Y, DEGUCHI M, et al. Solid electrolyte with oxidation tolerance provides a high-capacity Li2S-based positive electrode for all-solid-state Li/S batteries[J]. Advanced Functional Materials, 2022, 32(5): 2106174. DOI: 10.1002/adfm.202106174. |
18 | KIM J T, SU H, ZHONG Y, et al. All-solid-state lithium-sulfur batteries through a reaction engineering lens[J]. Nature Chemical Engineering, 2024, 1(6): 400-410. DOI: 10.1038/s44286-024-00079-5. |
19 | DEWALD G F, OHNO S, HERING J G C, et al. Analysis of charge carrier transport toward optimized cathode composites for all-solid-state Li-S batteries[J]. Batteries & Supercaps, 2021, 4(1): 183-194. DOI: 10.1002/batt.202000194. |
20 | GAO X, ZHENG X L, TSAO Y, et al. All-solid-state lithium-sulfur batteries enhanced by redox mediators[J]. Journal of the American Chemical Society, 2021, 143(43): 18188-18195. DOI: 10.1021/jacs.1c07754. |
21 | WANG D W, JHANG L J, KOU R, et al. Realizing high-capacity all-solid-state lithium-sulfur batteries using a low-density inorganic solid-state electrolyte[J]. Nature Communications, 2023, 14(1): 1895. DOI: 10.1038/s41467-023-37564-z. |
22 | HOLEKEVI CHANDRAPPA M L, QI J, CHEN C, et al. Thermodynamics and kinetics of the cathode-electrolyte interface in all-solid-state Li-S batteries[J]. Journal of the American Chemical Society, 2022, 144(39): 18009-18022. DOI: 10.1021/jacs.2c07482. |
23 | HOU L P, YUAN H, ZHAO C Z, et al. Improved interfacial electronic contacts powering high sulfur utilization in all-solid-state lithium-sulfur batteries[J]. Energy Storage Materials, 2020, 25: 436-442. DOI: 10.1016/j.ensm.2019.09.037. |
24 | 叶戈, 袁洪, 赵辰孜, 等. 全固态锂硫电池正极中离子输运与电子传递的平衡[J]. 储能科学与技术, 2020, 9(2): 339-345. DOI: 10.19799/j.cnki.2095-4239.2020.0002. |
YE G, YUAN H, ZHAO C Z, et al. Balance between ion migration and electron transport in composite cathodes for all-solid-state lithium-sulfur batteries[J]. Energy Storage Science and Technology, 2020, 9(2): 339-345. DOI: 10.19799/j.cnki.2095-4239.2020.0002. | |
25 | LIU Y Z, MENG X Y, WANG Z Y, et al. A Li2S-based all-solid-state battery with high energy and superior safety[J]. Science Advances, 2022, 8(1): eabl8390. DOI: 10.1126/sciadv.abl8390. |
26 | FUJITA Y, MÜNCH K, ASAKURA T, et al. Dynamic volume change of Li2S-based active material and the influence of stacking pressure on capacity in all-solid-state batteries[J]. Chemistry of Materials, 2024, 36(15): 7533-7540. DOI: 10.1021/acs.chemmater.4c01514. |
27 | LIN Z, LIU Z C, DUDNEY N J, et al. Lithium superionic sulfide cathode for all-solid lithium-sulfur batteries[J]. ACS Nano, 2013, 7(3): 2829-2833. DOI: 10.1021/nn400391h. |
28 | XU R C, YUE J, LIU S F, et al. Cathode-supported all-solid-state lithium-sulfur batteries with high cell-level energy density[J]. ACS Energy Letters, 2019, 4(5): 1073-1079. DOI: 10.1021/acsenergylett.9b00430. |
29 | FUJITA Y, SAKUDA A, HASEGAWA Y, et al. High capacity Li2S-Li2O-LiI positive electrodes with nanoscale ion-conduction pathways for all-solid-state Li/S batteries[J]. Small, 2023, 19(36): 2302179. DOI: 10.1002/smll.202302179. |
30 | YUAN H, NAN H X, ZHAO C Z, et al. Slurry-coated sulfur/sulfide cathode with Li metal anode for all-solid-state lithium-sulfur pouch cells[J]. Batteries & Supercaps, 2020, 3(7): 596-603. DOI: 10.1002/batt.202000051. |
31 | KIM H, CHOI H N, HWANG J Y, et al. Tailoring the interface between sulfur and sulfide solid electrolyte for high-areal-capacity all-solid-state lithium-sulfur batteries[J]. ACS Energy Letters, 2023, 8(10): 3971-3979. DOI: 10.1021/acsenergylett.3c01473. |
32 | MWIZERWA J P, ZHANG Q, HAN F D, et al. Sulfur-embedded FeS2 as a high-performance cathode for room temperature all-solid-state lithium-sulfur batteries[J]. ACS Applied Materials & Interfaces, 2020, 12(16): 18519-18525. DOI: 10.1021/acsami. 0c01607. |
33 | SHI J M, LIU G Z, WENG W, et al. Co3S4@Li7P3S11 hexagonal platelets as cathodes with superior interfacial contact for all-solid-state lithium batteries[J]. ACS Applied Materials & Interfaces, 2020, 12(12): 14079-14086. DOI: 10.1021/acsami.0c02085. |
34 | YANG M L, YAO Y, CHANG M Y, et al. High energy density sulfur-rich MoS6-based nanocomposite for room temperature all-solid-state lithium metal batteries[J]. Advanced Energy Materials, 2023, 13(28): 2300962. DOI: 10.1002/aenm.202300962. |
35 | ZHANG X Y, YU T, YANG S Y, et al. Organosulfur cathodes in lithium metal batteries: Bridging the gap between fundamentals and practical applications[J]. Advanced Functional Materials, 2024, 34(42): 2405122. DOI: 10.1002/adfm.202405122. |
36 | GAO J, GAO Y, HAO J H, et al. Activating redox kinetics of Li2S via Cu+, I- co-doping toward high-performance all-solid-state lithium sulfide-based batteries[J]. Small, 2024, 20(47): 2404171. DOI: 10.1002/smll.202404171. |
37 | XU G L, SUN H, LUO C, et al. Solid-state lithium/selenium-sulfur chemistry enabled via a robust solid-electrolyte interphase[J]. Advanced Energy Materials, 2019, 9(2): 1802235. DOI: 10.1002/aenm.201802235. |
38 | XU K L, LIU X J, LIANG J W, et al. Manipulating the redox kinetics of Li-S chemistry by tellurium doping for improved Li-S batteries[J]. ACS Energy Letters, 2018, 3(2): 420-427. DOI: 10.1021/acsenergylett.7b01249. |
39 | ZHANG Y, ORHAN O K, TAO L, et al. A high-performance tellurium-sulfur cathode in carbonate-based electrolytes[J]. Nano Energy, 2023, 107: 108141. DOI: 10.1016/j.nanoen.2022.108141. |
40 | ZHAO W, ZHANG Y, LIU Q S, et al. Entropy-modulated short-chain cathode for low-temperature all-solid-state Li-S batteries[J]. Angewandte Chemie International Edition, 2025, 64(1): e202413670. DOI: 10.1002/anie.202413670. |
41 | OYAMA N, TATSUMA T, SOTOMURA T. Organosulfur polymer batteries with high energy density[J]. Journal of Power Sources, 1997, 68(1): 135-138. DOI: 10.1016/S0378-7753(96)02586-4. |
42 | MOON H S, PARK J K. Electrochemical characteristics of the dimercaptan-poly(ethylene oxide) grafted polyaniline electrodes[J]. Solid State Ionics, 1999, 120(1/2/3/4): 1-12. DOI: 10.1016/S0167-2738(99)00003-X. |
43 | POPE J M, SATO T, SHOJI E, et al. Organosulfur/conducting polymer composite cathodes[J]. Journal of the Electrochemical Society, 2002, 149(7): A939. DOI: 10.1149/1.1482768. |
44 | WANG J L, YANG J, XIE J Y, et al. A novel conductive polymer-sulfur composite cathode material for rechargeable lithium batteries[J]. Advanced Materials, 2002, 14(13/14): 963-965. DOI: 10.1016/s0140-6701(03)91849-2. |
45 | WEI S Y, MA L, HENDRICKSON K E, et al. Metal-sulfur battery cathodes based on PAN-sulfur composites[J]. Journal of the American Chemical Society, 2015, 137(37): 12143-12152. DOI: 10.1021/jacs.5b08113. |
46 | WANG S, ZHOU J B, FENG S J, et al. Polythiocyanogen as cathode materials for high temperature all-solid-state lithium-sulfur batteries[J]. ACS Energy Letters, 2023, 8(6): 2699-2706. DOI: 10.1021/acsenergylett.3c00659. |
47 | TAN S, RAHMAN M M, WU Z H, et al. Structural and interphasial stabilities of sulfurized polyacrylonitrile (SPAN) cathode[J]. ACS Energy Letters, 2023, 8(6): 2496-2504. DOI: 10.1021/acsenergylett.3c00281. |
48 | WANG S, LU B Y, CHENG D Y, et al. Structural transformation in a sulfurized polymer cathode to enable long-life rechargeable lithium-sulfur batteries[J]. Journal of the American Chemical Society, 2023, 145(17): 9624-9633. DOI: 10.1021/jacs.3c00628. |
49 | KIM H, SADAN M K, KIM C, et al. Enhanced reversible capacity of sulfurized polyacrylonitrile cathode for room-temperature Na/S batteries by electrochemical activation[J]. Chemical Engineering Journal, 2021, 426: 130787. DOI: 10.1016/j.cej.2021.130787. |
50 | PEREZ BELTRAN S, BALBUENA P B. Sulfurized polyacrylonitrile (SPAN): Changes in mechanical properties during electrochemical lithiation[J]. The Journal of Physical Chemistry C, 2021, 125(24): 13185-13194. DOI: 10.1021/acs.jpcc.1c02966. |
51 | LI M R, FRERICHS J E, KOLEK M, et al. Solid-state lithium-sulfur battery enabled by thio-LiSICON/polymer composite electrolyte and sulfurized polyacrylonitrile cathode[J]. Advanced Functional Materials, 2020, 30(14): 1910123. DOI: 10.1002/adfm.201910123. |
52 | LI C, ZHANG Q, SHENG J Z, et al. A quasi-intercalation reaction for fast sulfur redox kinetics in solid-state lithium-sulfur batteries[J]. Energy & Environmental Science, 2022, 15(10): 4289-4300. DOI: 10.1039/D2EE01820A. |
53 | GUO Y W, ZUO W J, WU X K, et al. Practical SPAN||Li cells enabled by in situ polymerized electrolyte[J]. Materials Today Energy, 2024, 45: 101662. DOI: 10.1016/j.mtener.2024.101662. |
54 | ZHANG Y Y, SUN Y L, PENG L F, et al. Se as eutectic accelerator in sulfurized polyacrylonitrile for high performance all-solid-state lithium-sulfur battery[J]. Energy Storage Materials, 2019, 21: 287-296. DOI: 10.1016/j.ensm.2018.12.010. |
55 | ZHANG W, ZHANG Y Y, PENG L F, et al. Elevating reactivity and cyclability of all-solid-state lithium-sulfur batteries by the combination of tellurium-doping and surface coating[J]. Nano Energy, 2020, 76: 105083. DOI: 10.1016/j.nanoen.2020.105083. |
56 | BHARGAV A, MANTHIRAM A. 2,5-Dimercapto-1,3,4-thiadiazole (DMCT)-based polymers for rechargeable metal-sulfur batteries[J]. Energy & Environmental Materials, 2023, 6(6): e12446. DOI: 10.1002/eem2.12446. |
57 | PAN H, ZHANG M H, CHENG Z, et al. Carbon-free and binder-free Li-Al alloy anode enabling an all-solid-state Li-S battery with high energy and stability[J]. Science Advances, 2022, 8(15): eabn4372. DOI: 10.1126/sciadv.abn4372. |
58 | DUAN C, CHENG Z, LI W, et al. Realizing the compatibility of a Li metal anode in an all-solid-state Li-S battery by chemical iodine-vapor deposition[J]. Energy & Environmental Science, 2022, 15(8): 3236-3245. DOI: 10.1039/D2EE01358D. |
59 | LEE Y G, FUJIKI S, JUNG C, et al. High-energy long-cycling all-solid-state lithium metal batteries enabled by silver-carbon composite anodes[J]. Nature Energy, 2020, 5(4): 299-308. DOI: 10.1038/s41560-020-0575-z. |
60 | BI C X, ZHAO M, HOU L P, et al. Anode material options toward 500 Wh·kg-1 lithium-sulfur batteries[J]. Advanced Science, 2022, 9(2): 2103910. DOI: 10.1002/advs.202103910. |
61 | TU Z Y, CHOUDHURY S, ZACHMAN M J, et al. Fast ion transport at solid-solid interfaces in hybrid battery anodes[J]. Nature Energy, 2018, 3(4): 310-316. DOI: 10.1038/s41560-018-0096-1. |
62 | WAN J, SONG Y X, CHEN W P, et al. Micromechanism in all-solid-state alloy-metal batteries: Regulating homogeneous lithium precipitation and flexible solid electrolyte interphase evolution[J]. Journal of the American Chemical Society, 2021, 143(2): 839-848. DOI: 10.1021/jacs.0c10121. |
63 | JI W X, ZHANG X X, LIU M, et al. High-performance all-solid-state Li-S batteries enabled by an all-electrochem-active prelithiated Si anode[J]. Energy Storage Materials, 2022, 53: 613-620. DOI: 10.1016/j.ensm.2022.10.003. |
64 | WANG T R, DUAN J, ZHANG B, et al. A self-regulated gradient interphase for dendrite-free solid-state Li batteries[J]. Energy & Environmental Science, 2022, 15(3): 1325-1333. DOI: 10.1039/D1EE03604A. |
65 | SANTHOSHA A L, MEDENBACH L, BUCHHEIM J R, et al. The indium-lithium electrode in solid-state lithium-ion batteries: Phase formation, redox potentials, and interface stability[J]. Batteries & Supercaps, 2019, 2(6): 497. DOI: 10.1002/batt.201900073. |
66 | YE Y D, XIE H Y, YANG Y H, et al. Solid-solution or intermetallic compounds: Phase dependence of the Li-alloying reactions for Li-metal batteries[J]. Journal of the American Chemical Society, 2023. DOI: 10.1021/jacs.3c08711. |
67 | KRAUSKOPF T, MOGWITZ B, ROSENBACH C, et al. Diffusion limitation of lithium metal and Li-Mg alloy anodes on LLZO type solid electrolytes as a function of temperature and pressure[J]. Advanced Energy Materials, 2019, 9(44): 1902568. DOI: 10.1002/aenm.201902568. |
68 | QU J L, XIAO J W, WANG T S, et al. High rate transfer mechanism of lithium ions in lithium-tin and lithium-indium alloys for lithium batteries[J]. The Journal of Physical Chemistry C, 2020, 124(45): 24644-24652. DOI: 10.1021/acs.jpcc.0c07880. |
69 | LU P S, XIA Y, SUN G C, et al. Realizing long-cycling all-solid-state L i - I n TiS2 batteries using Li6+ xMxAs1- xS5I (M=Si, Sn) sulfide solid electrolytes[J]. Nature Communications, 2023, 14: 4077. DOI: 10.1038/s41467-023-39686-w. |
70 | ZHANG X L, ZHANG H Y, GENG Y, et al. A multifunctional nano filler for solid polymer electrolyte toward stable cycling for lithium-metal anodes in lithium-sulfur batteries[J]. Chemical Engineering Journal, 2022, 444: 136328. DOI: 10.1016/j.cej.2022.136328. |
71 | GE M Z, CAO C Y, BIESOLD G M, et al. Silicon anodes: Recent advances in silicon-based electrodes: From fundamental research toward practical applications[J]. Advanced Materials, 2021, 33(16): 2004577. DOI: 10.1002/adma.2004577. |
72 | TAN D H S, CHEN Y T, YANG H D, et al. Carbon-free high-loading silicon anodes enabled by sulfide solid electrolytes[J]. Science, 2021, 373(6562): 1494-1499. DOI: 10.1126/science.abg7217. |
73 | LYU Z W, LIU J, LI C, et al. High-areal-capacity all-solid-state Li-S battery enabled by dry process technology[J]. eTransportation, 2024, 19: 100298. DOI: 10.1016/j.etran.2023.100298. |
74 | KIM M, KIM M J, OH Y S, et al. Design strategies of Li-Si alloy anode for mitigating chemo-mechanical degradation in sulfide-based all-solid-state batteries[J]. Advanced Science, 2023, 10(24): 2301381. DOI: 10.1002/advs.202301381. |
75 | ZHU J H, LUO J Y, LI J Y, et al. A porous Li-Al alloy anode toward high-performance sulfide-based all-solid-state lithium batteries[J]. Advanced Materials, 2024, 36(39): 2407128. DOI: 10.1002/adma.202407128. |
76 | SUZUKI N, YASHIRO N, FUJIKI S, et al. Highly cyclable all-solid-state battery with deposition-type lithium metal anode based on thin carbon black layer[J]. Advanced Energy and Sustainability Research, 2021, 2(11): 2100066. DOI: 10.1002/aesr.202100066. |
77 | WANG Z X, LU Y, ZHAO C Z, et al. Suppressing Li voids in all-solid-state lithium metal batteries through Li diffusion regulation[J]. Joule, 2024, 8(10): 2794-2810. DOI: 10.1016/j.joule. 2024.07.007. |
78 | SU Y B, YE L H, FITZHUGH W, et al. A more stable lithium anode by mechanical constriction for solid state batteries[J]. Energy & Environmental Science, 2020, 13(3): 908-916. DOI: 10.1039/C9EE04007B. |
79 | PAN L D, ZHAO W B, ZHAI L Q, et al. Hierarchical carbon interlayer design as interfacial stabilizer and in-situ solid-electrolyte infiltrate for high-performance solid-state Li-S batteries[J]. Chem & Bio Engineering, 2024, 1(4): 340-348. DOI: 10.1021/cbe.4c00040. |
80 | PANG Y P, PAN J Y, YANG J H, et al. Electrolyte/electrode interfaces in all-solid-state lithium batteries: A review[J]. Electrochemical Energy Reviews, 2021, 4(2): 169-193. DOI: 10.1007/s41918-020-00092-1. |
81 | TAN D H S, BANERJEE A, CHEN Z, et al. From nanoscale interface characterization to sustainable energy storage using all-solid-state batteries[J]. Nature Nanotechnology, 2020, 15(3): 170-180. DOI: 10.1038/s41565-020-0657-x. |
82 | HU X, YU J H, WANG Y, et al. A lithium intrusion-blocking interfacial shield for wide-pressure-range solid-state lithium metal batteries[J]. Advanced Materials, 2024, 36(7): 2308275. DOI: 10.1002/adma.202308275. |
83 | HUO H Y, CHEN Y, LI R Y, et al. Design of a mixed conductive garnet/Li interface for dendrite-free solid lithium metal batteries[J]. Energy & Environmental Science, 2020, 13(1): 127-134. DOI: 10.1039/C9EE01903K. |
84 | FAN Z J, DING B, ZHANG T F, et al. Solid/solid interfacial architecturing of solid polymer electrolyte-based all-solid-state lithium-sulfur batteries by atomic layer deposition[J]. Small, 2019, 15(46): 1903952. DOI: 10.1002/smll.201903952. |
85 | KIM K J, BALAISH M, WADAGUCHI M, et al. Solid-state Li-metal batteries: Challenges and horizons of oxide and sulfide solid electrolytes and their interfaces[J]. Advanced Energy Materials, 2021, 11(1): 2002689. DOI: 10.1002/aenm.202002689. |
86 | ABDELHAMID A A, CHEONG J L, YING J Y. Li7La3Zr2O12 sheet-based framework for high-performance lithium-sulfur hybrid quasi-solid battery[J]. Nano Energy, 2020, 71: 104633. DOI: 10.1016/j.nanoen.2020.104633. |
87 | WAN H L, WANG Z Y, ZHANG W R, et al. Interface design for all-solid-state lithium batteries[J]. Nature, 2023, 623(7988): 739-744. DOI: 10.1038/s41586-023-06653-w. |
88 | PEI F, WU L, ZHANG Y, et al. Interfacial self-healing polymer electrolytes for long-cycle solid-state lithium-sulfur batteries[J]. Nature Communications, 2024, 15(1): 351. DOI: 10.1038/s41467-023-43467-w. |
89 | YIN X S, WANG L, KIM Y, et al. Thermal conductive 2D boron nitride for high-performance all-solid-state lithium-sulfur batteries[J]. Advanced Science, 2020, 7(19): 2001303. DOI: 10.1002/advs.202001303. |
90 | JUDEZ X, ESHETU G G, GRACIA I, et al. Understanding the role of nano-aluminum oxide in all-solid-state lithium-sulfur batteries[J]. ChemElectroChem, 2019, 6(2): 326-330. DOI: 10.1002/celc.201801390. |
91 | NAGAO M, HAYASHI A, TATSUMISAGO M. High-capacity Li2S-nanocarbon composite electrode for all-solid-state rechargeable lithium batteries[J]. Journal of Materials Chemistry, 2012, 22(19): 10015-10020. DOI: 10.1039/C2JM16802B. |
92 | YANG Z Z, ZHU Z Y, MA J, et al. Phase separation of Li2S/S at nanoscale during electrochemical lithiation of the solid-state lithium-sulfur battery using in situ TEM[J]. Advanced Energy Materials, 2016, 6(20): 1600806. DOI: 10.1002/aenm.201600806. |
93 | CAO D X, SUN X, LI F, et al. Understanding electrochemical reaction mechanisms of sulfur in all-solid-state batteries through operando and theoretical studies[J]. Angewandte Chemie International Edition, 2023, 62(20): e202302363. DOI: 10.1002/anie.202302363. |
94 | GU J B, HU W X, WU Y Q, et al. Asymmetric sulfur redox paths in sulfide-based all-solid-state lithium-sulfur batteries[J]. Chemistry of Materials, 2024, 36(9): 4403-4416. DOI: 10.1021/acs.chemmater.3c03317. |
95 | YU P W, SUN S R, SUN C H, et al. Active regulation volume change of micrometer-size Li2S cathode with high materials utilization for all-solid-state Li/S batteries through an interfacial redox mediator[J]. Advanced Functional Materials, 2024, 34(8): 2306939. DOI: 10.1002/adfm.202306939. |
96 | KIM J T, RAO A, NIE H Y, et al. Manipulating Li2S2/Li2S mixed discharge products of all-solid-state lithium sulfur batteries for improved cycle life[J]. Nature Communications, 2023, 14: 6404. DOI: 10.1038/s41467-023-42109-5. |
97 | LI J, XIE F X, PANG W W, et al. Regulate transportation of ions and polysulfides in all-solid-state Li-S batteries using ordered-MOF composite solid electrolyte[J]. Science Advances, 2024, 10(11): eadl3925. DOI: 10.1126/sciadv.adl3925. |
98 | MENG X Y, LIU Y Z, MA Y F, et al. Diagnosing and correcting the failure of the solid-state polymer electrolyte for enhancing solid-state lithium-sulfur batteries[J]. Advanced Materials, 2023, 35(22): 2212039. DOI: 10.1002/adma.202212039. |
99 | WANG M K, SU H, ZHONG Y, et al. Localized S-Li2S conversion with accelerated kinetics mediated by mixed conductive shell for high-performance solid-state lithium-sulfur battery[J]. Advanced Energy Materials, 2024, 14(9): 2302255. DOI: 10.1002/aenm. 202302255. |
100 | LIU M, WANG C, ZHAO C L, et al. Quantification of the Li-ion diffusion over an interface coating in all-solid-state batteries via NMR measurements[J]. Nature Communications, 2021, 12(1): 5943. DOI: 10.1038/s41467-021-26190-2. |
101 | BRADBURY R, DEWALD G F, KRAFT M A, et al. Visualizing reaction fronts and transport limitations in solid-state Li-S batteries via operando neutron imaging[J]. Advanced Energy Materials, 2023, 13(17): 2203426. DOI: 10.1002/aenm. 202203426. |
102 | BRADBURY R, KARDJILOV N, DEWALD G F, et al. Visualizing lithium ion transport in solid-state Li-S batteries using 6Li contrast enhanced neutron imaging[J]. Advanced Functional Materials, 2023, 33(38): 2302619. DOI: 10.1002/adfm.202302619. |
103 | NING Z Y, JOLLY D S, LI G C, et al. Visualizing plating-induced cracking in lithium-anode solid-electrolyte cells[J]. Nature Materials, 2021, 20(8): 1121-1129. DOI: 10.1038/s41563-021-00967-8. |
104 | SUN M H, LIU T F, YUAN Y F, et al. Visualizing lithium dendrite formation within solid-state electrolytes[J]. ACS Energy Letters, 2021, 6(2): 451-458. DOI: 10.1021/acsenergylett.0c02314. |
105 | LUO S T, LIU X Y, ZHANG X, et al. Nanostructure of the interphase layer between a single Li dendrite and sulfide electrolyte in all-solid-state Li batteries[J]. ACS Energy Letters, 2022, 7(9): 3064-3071. DOI: 10.1021/acsenergylett.2c01543. |
106 | LIANG Z T, XIANG Y X, WANG K J, et al. Understanding the failure process of sulfide-based all-solid-state lithium batteries via operando nuclear magnetic resonance spectroscopy[J]. Nature Communications, 2023, 14(1): 259. DOI: 10.1038/s41467-023-35920-7. |
107 | HAN F D, WESTOVER A S, YUE J, et al. High electronic conductivity as the origin of lithium dendrite formation within solid electrolytes[J]. Nature Energy, 2019, 4(3): 187-196. DOI: 10.1038/s41560-018-0312-z. |
[1] | 卢功勋, 袁华栋, 罗剑敏, 王垚, 刘育京, 石鹏, 邹世辉, 周光敏, 陶新永, 佴建威. 锂金属表面预处理策略:进展与展望[J]. 储能科学与技术, 2025, 14(3): 947-964. |
[2] | 李亚捷, 王依平, 陈斌, 林海龙, 张更, 施思齐. 机器学习辅助相场模拟预测锂离子输运参数对电池枝晶最大生长高度和空间利用率的影响[J]. 储能科学与技术, 2024, 13(9): 2864-2870. |
[3] | 石敏, 蒋鹏杰, 徐琛, 贺鑫, 梁宵. 抑制锂金属负极枝晶的电解液调控策略[J]. 储能科学与技术, 2024, 13(5): 1620-1634. |
[4] | 韩雨, 曹盛玲, 宁靖, 王康丽, 蒋凯, 周敏. 聚合物改性锂金属电池界面策略研究综述[J]. 储能科学与技术, 2023, 12(8): 2491-2503. |
[5] | 余永诗, 夏先明, 黄弘扬, 姚雨, 芮先宏, 钟国彬, 苏伟, 余彦. 钠金属负极人工界面保护层的研究进展[J]. 储能科学与技术, 2023, 12(5): 1380-1391. |
[6] | 沈馨, 张睿, 赵辰孜, 武鹏, 张羽彤, 张俊东, 范丽珍, 刘全兵, 陈爱兵, 张强. 金属锂电池中力-电化学机制研究进展[J]. 储能科学与技术, 2022, 11(9): 2781-2797. |
[7] | 魏超超, 余创, 吴仲楷, 彭林峰, 程时杰, 谢佳. Li3PS4 固态电解质的研究进展[J]. 储能科学与技术, 2022, 11(5): 1368-1382. |
[8] | 王心怡, 李维杰, 韩朝, 刘化鹍, 窦世学. 水系锌离子电池金属负极的挑战与优化策略[J]. 储能科学与技术, 2022, 11(4): 1211-1225. |
[9] | 乔东格, 刘训良, 温治, 豆瑞峰, 周文宁. 升温和脉冲充电对锂枝晶生长抑制作用的数值分析[J]. 储能科学与技术, 2022, 11(3): 1008-1018. |
[10] | 李亚捷, 张更, 沙立婷, 赵伟, 陈斌, 王达, 喻嘉, 施思齐. 可充电电池中枝晶问题的相场模拟[J]. 储能科学与技术, 2022, 11(3): 929-938. |
[11] | 娄永钢, 吴大勇, 蔡博然, 梁卫华, 杨璐烨, 何磊, 操建华. 芳纶-固态离子导体复合隔膜的制备与性能[J]. 储能科学与技术, 2022, 11(10): 3112-3122. |
[12] | 姚祯, 王锐, 阳雪, 张琦, 刘庆华, 王保国, 缪平. 锌铁液流电池研究现状及展望[J]. 储能科学与技术, 2022, 11(1): 78-88. |
[13] | 高金辉, 陈英龙, 孟繁慧, 丁美超, 王莉, 许刚, 何向明. 锂离子电池原位光学显微观测[J]. 储能科学与技术, 2022, 11(1): 53-59. |
[14] | 许卓, 郑莉莉, 陈兵, 张涛, 常修亮, 韦守李, 戴作强. 固态电池复合电解质研究综述[J]. 储能科学与技术, 2021, 10(6): 2117-2126. |
[15] | 刘洋洋, 王旭阳, 徐谢宇, 王永静, 熊仕昭, 宋忠孝. 锂金属负极用集流体改性研究及进展[J]. 储能科学与技术, 2021, 10(4): 1261-1272. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||