储能科学与技术 ›› 2025, Vol. 14 ›› Issue (4): 1424-1444.doi: 10.19799/j.cnki.2095-4239.2024.1078

• 储能材料与器件 • 上一篇    下一篇

高比能固态锂硫电池研究进展

温博华1(), 孟海军2, 陈勇龙1, 李晓辉3, 罗加严3, 林琳4, 张兰5   

  1. 1.清华大学深圳国际研究生院,材料研究院,广东 深圳 518055
    2.军事科学院某所,北京 100141
    3.上海交通大学材料科学与工程学院,上海 200240
    4.清华大学深圳国际研究生院,环境与生态研究院,广东 深圳 518055
    5.中国科学院过程工程研究所,北京 100191
  • 收稿日期:2024-11-18 修回日期:2024-12-10 出版日期:2025-04-28 发布日期:2025-05-20
  • 通讯作者: 温博华 E-mail:bohuawen@sz.tsinghua.edu.cn
  • 作者简介:温博华(1988—),女,博士研究生,副教授,从事能源材料及微观界面分析研究,E-mail:bohuawen@sz.tsinghua.edu.cn
  • 基金资助:
    国家重点研发计划项目(2021YFB2500100);河南省重点研发计划项目(241111241500);深圳市高等院校稳定支持(WDZC2022 0817104930002)

Research progress on high specific-energy solid-state lithium-sulfur batteries

Bohua WEN1(), Haijun MENG2, Yonglong CHEN1, Xiaohui LI3, Jiayan LUO3, Lin LIN4, Lan ZHANG5   

  1. 1.Tsinghua Shenzhen International Graduate School, Materials Research Institute, Shenzhen 518055, Guangdong, China
    2.Particular Institute, Academy of Military Science, Beijing 100141, China
    3.Shanghai Jiao Tong University, School of Materials Science and Engineering, Shanghai 200240, China
    4.Tsinghua Shenzhen International Graduate School, Institute of Environment and Ecology, Shenzhen 518055, Guangdong, China
    5.Institute of Process Engineering, Chinese Academy of Science, Beijing 100191, China
  • Received:2024-11-18 Revised:2024-12-10 Online:2025-04-28 Published:2025-05-20
  • Contact: Bohua WEN E-mail:bohuawen@sz.tsinghua.edu.cn

摘要:

固态锂硫电池(SLSB)具有理论能量密度高、原材料成本低廉等优势,是最具前景的下一代储能器件之一。与采用液态电解液的锂硫电池(LSB)相比,SLSB不存在穿梭效应,且理论上具有更长的循环寿命,然而目前其相关基础理论、高比能电芯制备均面临诸多难题:如S8到Li2S的固-固转化过程、限制因素及相应的强化手段,高载量电极中电荷逾渗网络的构建方法及动态稳定策略,锂金属负极的枝晶抑制与应变调控等。上述问题需要结合电极材料设计、界面优化匹配结合先进的原位/非原位表征手段来逐步解析。本文综述了近年来固态锂硫电池正极、负极与先进表征手段的主要研究成果与重要进展,总结了SLSB在正极材料、电极结构方面与LSB的差异,发现保持电荷(离子、电子)高效导通、调控电极形变是其核心问题;负极方面,提升Li剥离过程的极限电流密度(CCD)是制约高比能固态锂硫电芯的关键挑战。基于此,相关表征技术、机理研究应适当向相关方向侧重,以支撑低应变电芯设计、加速高比能SLSB的发展与应用。

关键词: 固态锂硫电池, 含硫正极, 复合锂负极, 极限电流密度, 枝晶, 原位观测

Abstract:

Solid-state lithium-sulfur batteries (SLSBs) are among the most promising next-generation energy storage devices due to their high theoretical energy density and low cost. Compared to conventional lithium-sulfur batteries (LSBs) with liquid electrolytes, SLSBs have the potential to eliminate the shuttle effect, thereby extending battery lifespan. However, substantial challenges remain, particularly regarding fundamental mechanisms and manufacturing processes. These include understanding the solid-solid conversion mechanism from S8 to Li2S to identify limiting factors and potential solutions, constructing a dynamic and stable charge transfer network for high-loading cathodes, and managing dendrite growth and strain regulation in the lithium metal anode. Addressing these challenges requires innovative electrode material design, interface optimizations, and advanced characterization techniques using in-situ and ex-situ methods. This review highlights recent research advancements in SLSBs, focusing on cathodes, anodes, and characterization methods. Additionally, we summarize key differences between SLSBs and LSBs in terms of cathode material and electrode structures. For the cathode, it is essential to maintain efficient charge percolating pathways for both ions and electrons while regulating electrode deformation. Increasing the critical current density of lithium stripping for the anode is crucial for achieving high specific-energy in SLSBs. Further mechanistic investigations are necessary to design low-strain cell configurations that enable the development of high specific-energy SLSBs.

Key words: solid-state lithium-sulfur battery, sulfur-containing cathode, metal lithium-based anode, critical current density, dendritic, in-situ observation

中图分类号: