1 |
HAMWI A, GUÉRIN K, DUBOIS M. Fluorine-intercalated graphite for lithium batteries[M]//Fluorinated Materials for Energy Conversion. Amsterdam: Elsevier, 2005: 369-395. DOI: 10.1016/b978-008044472-7/50045-x.
|
2 |
GIRAUDET J, DELABARRE C, GUÉRIN K, et al. Comparative performances for primary lithium batteries of some covalent and semi-covalent graphite fluorides[J]. Journal of Power Sources, 2006, 158(2): 1365-1372. DOI: 10.1016/j.jpowsour.2005.10.020.
|
3 |
CHEN X Y, FAN K, LIU Y, et al. Recent advances in fluorinated graphene from synthesis to applications: Critical review on functional chemistry and structure engineering[J]. Advanced Materials, 2022, 34(1): 2101665. DOI: 10.1002/adma.202101665.
|
4 |
ZHOU R X, LI Y, FENG Y Y, et al. The electrochemical performances of fluorinated hard carbon as the cathode of lithium primary batteries[J]. Composites Communications, 2020, 21: 100396. DOI: 10.1016/j.coco.2020.100396.
|
5 |
LI X T, ZHANG H C, LIU C, et al. A MOF-derived multifunctional nano-porous fluorinated carbon for high performance lithium/fluorinated carbon primary batteries[J]. Microporous and Mesoporous Materials, 2021, 310: 110650. DOI: 10.1016/j.micromeso. 2020. 110650.
|
6 |
HIGHTOWER A, DAROLLES I, YAZAMI R. Surface species on Ag modified carbon fluoride (CFx) rechargeable battery electrodes measured by XPS[J]. ECS Meeting Abstracts, 2010, MA2010-03(1): 518. DOI: 10.1149/ma2010-03/1/518.
|
7 |
ZHANG H M, XIAO P, SHI J Y, et al. Silver-modified carbon fluoride as the cathode material for pouch-type primary lithium batteries[J]. Journal of Electronic Materials, 2021, 50(7): 4075-4082. DOI: 10.1007/s11664-021-08936-2.
|
8 |
SIDERIS P J, YEW R, NIEVES I, et al. Charge transfer in Li/CFx-silver vanadium oxide hybrid cathode batteries revealed by solid state 7Li and 19F nuclear magnetic resonance spectroscopy[J]. Journal of Power Sources, 2014, 254: 293-297. DOI: 10.1016/j.jpowsour.2013.12.108.
|
9 |
MEDURI P, CHEN H H, CHEN X L, et al. Hybrid CFx-Ag2V4O11 as a high-energy, power density cathode for application in an underwater acoustic microtransmitter[J]. Electrochemistry Communications, 2011, 13(12): 1344-1348. DOI: 10.1016/j.elecom.2011.08.006.
|
10 |
JONES J P, JONES S C, KRAUSE F C, et al. Additive effects on Li‖CFx and Li‖CFx-MnO2 primary cells at low temperature[J]. Journal of the Electrochemical Society, 2017, 164(13): A3109-A3116. DOI: 10.1149/2.0831713jes.
|
11 |
NAGATA M, YI J, TOMCSI M, et al. Performance of lithium primary cell using a hybrid positive electrode of LiV3O8 and CFx[J]. ECS Transactions, 2011, 33(39): 223-237. DOI: 10.1149/1. 3589931.
|
12 |
YIN X D, LI Y, FENG Y Y, et al. Polythiophene/graphite fluoride composites cathode for high power and energy densities lithium primary batteries[J]. Synthetic Metals, 2016, 220: 560-566. DOI: 10.1016/j.synthmet.2016.07.032.
|
13 |
LI L, ZHU L, PAN Y, et al. Integrated polyaniline-coated CFx cathode materials with enhanced electrochemical capabilities for Li/CFx primary battery[J]. International Journal of Electrochemical Science, 2016, 11(8): 6838-6847. DOI: 10.20964/2016.08.41.
|
14 |
ZHANG S S, FOSTER D, READ J. Enhancement of discharge performance of Li/CFx cell by thermal treatment of CFx cathode material[J]. Journal of Power Sources, 2009, 188(2): 601-605. DOI: 10.1016/j.jpowsour.2008.12.007.
|
15 |
ZHANG S S, FOSTER D, READ J. Carbothermal treatment for the improved discharge performance of primary Li/CFx battery[J]. Journal of Power Sources, 2009, 191(2): 648-652. DOI: 10.1016/j.jpowsour.2009.02.007.
|
16 |
ZHU L, PAN Y, LI L, et al. Preparation of CFx@C microcapsules as a high-rate capability cathode of lithium primary battery[J]. International Journal of Electrochemical Science, 2016, 11(1): 14-22. DOI: 10.1016/S1452-3981(23)15822-6.
|
17 |
DAI Y, CAI S D, WU L J, et al. Surface modified CFx cathode material for ultrafast discharge and high energy density[J]. Journal of Materials Chemistry A, 2014, 2(48): 20896-20901. DOI: 10.1039/C4TA05492J.
|
18 |
JIANG C, WANG B J, WU Z R, et al. Electrolyte-assisted dissolution-recrystallization mechanism towards high energy density and power density CF cathodes in potassium cell[J]. Nano Energy, 2020, 70: 104552. DOI: 10.1016/j.nanoen. 2020. 104552.
|
19 |
ZHONG G M, CHEN H X, HUANG X K, et al. High-power-density, high-energy-density fluorinated graphene for primary lithium batteries[J]. Frontiers in Chemistry, 2018, 6: 50. DOI: 10. 3389/fchem.2018.00050.
|
20 |
ROOT M J, DUMAS R, YAZAMI R, et al. The effect of carbon starting material on carbon fluoride synthesized at room temperature: Characterization and electrochemistry[J]. Journal of the Electrochemical Society, 2001, 148(4): A339. DOI: 10.1149/1. 1354612.
|
21 |
GROULT H, JULIEN C M, BAHLOUL A, et al. Improvements of the electrochemical features of graphite fluorides in primary lithium battery by electrodeposition of polypyrrole[J]. Electrochemistry Communications, 2011, 13(10): 1074-1076. DOI: 10.1016/j.elecom.2011.06.038.
|
22 |
JIANG C M, LI X J, YING Y B, et al. Fluorinated graphene-enabled durable triboelectric coating for water energy harvesting[J]. Small, 2021, 17(8): 2007805. DOI: 10.1002/smll.202007805.
|
23 |
AHMAD Y, DUBOIS M, GUÉRIN K, et al. Pushing the theoretical limit of Li-CFx batteries using fluorinated nanostructured carbon nanodiscs[J]. Carbon, 2015, 94: 1061-1070. DOI: 10.1016/j.carbon.2015.07.073.
|
24 |
WANG J L, SUN M H, LIU Y, et al. Unraveling nanoscale electrochemical dynamics of graphite fluoride by in situ electron microscopy: Key difference between lithiation and sodiation[J]. Journal of Materials Chemistry A, 2020, 8(12): 6105-6111. DOI: 10.1039/D0TA00093K.
|
25 |
AMATUCCI G G, PEREIRA N. Fluoride based electrode materials for advanced energy storage devices[J]. Journal of Fluorine Chemistry, 2007, 128(4): 243-262. DOI: 10.1016/j.jfluchem.2006.11.016.
|
26 |
LUO Z Y, WANG X, CHEN D W, et al. Ultrafast Li/fluorinated graphene primary batteries with high energy density and power density[J]. ACS Applied Materials & Interfaces, 2021, 13(16): 18809-18820. DOI: 10.1021/acsami.1c02064.
|