储能科学与技术 ›› 2025, Vol. 14 ›› Issue (6): 2278-2319.doi: 10.19799/j.cnki.2095-4239.2024.1256

• 储能材料与器件 • 上一篇    下一篇

高电压钴酸锂正极:关键挑战、改性策略与未来展望

王功瑞(), 张安萍, 任萱萱, 杨铭哲, 韩宇宁, 吴忠帅()   

  1. 能源催化转化全国重点实验室,中国科学院大连化学物理研究所,辽宁 大连 116023
  • 收稿日期:2024-12-29 修回日期:2025-04-04 出版日期:2025-06-28 发布日期:2025-06-27
  • 通讯作者: 吴忠帅 E-mail:wanggongrui@dicp.ac.cn;wuzs@dicp.ac.cn
  • 作者简介:王功瑞(1992—),男,博士,研究方向为双高储能器件的关键材料设计与快充储能机制,E-mail:wanggongrui@dicp.ac.cn
  • 基金资助:
    国家重点研发计划(2022YFA1504100);国家自然科学基金(22125903);辽宁省应用基础研究计划(2022JH2/101300210)

High-voltage lithium cobalt oxide cathode: Key challenges, modification strategies and future prospectives

Gongrui WANG(), Anping ZHANG, Xuanxuan REN, Mingzhe YANG, Yuning HAN, Zhongshuai WU()   

  1. State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, Liaoning, China
  • Received:2024-12-29 Revised:2025-04-04 Online:2025-06-28 Published:2025-06-27
  • Contact: Zhongshuai WU E-mail:wanggongrui@dicp.ac.cn;wuzs@dicp.ac.cn

摘要:

为了推动高端便携电子产品的进一步发展,迫切需要发展具有高能量密度、长循环寿命、高功率密度、宽温域的锂离子电池。作为便携场景下首选的正极材料,钴酸锂仍面临工作电压和比容量低、快充和宽温域下性能不足的挑战,难以满足高端先进电子设备的使用需求。本文系统地总结和讨论了高电压钴酸锂正极的失效机制和关键挑战,深入归纳探讨了多种改性策略的最新研究进展,并对未来研究方向进行了详细的展望。首先全面概括了高电压钴酸锂关键挑战,包括晶体结构、体相结构失效(相转变、层间滑移、裂纹萌生与扩展)、界面失效、复杂工况下的失效机制(高电压快充、高电压高温)。随后,对已发展的改性策略和改性机制进行了归纳总结,包括通过体相元素掺杂提升锂离子扩散速率和体相结构稳定性,包括锂位点、钴位点、氧位点和多位点掺杂;通过表界面化学调控提升表界面结构稳定性和离子/电子导电性,包括表面包覆(离子导体、电子导体、离子/电子双绝缘体材料)、原位结构修饰、电解液调控,以及界面原位电化学转化;通过其他策略优化电极中离子和电子的传输过程,包括黏结剂、导电剂和电极结构。最后,本文对前瞻性的观点和具有前景的研究方向进行了深入阐述,为下一代锂离子电池用高电压钴酸锂正极的设计制备提供了全面细致的建议和理论指导。

关键词: 钴酸锂, 高电压, 快充, 宽温域, 锂离子电池

Abstract:

The development of lithium-ion batteries (LIBs) with high energy density, long cycle life, high power density, and wide operating temperature range is urgently needed to promote the development of high-end portable electronic devices. Lithium cobalt oxide (LiCoO2, LCO), the most effective cathode material in portable applications, faces critical challenges such as limited charging cutoff voltage, low specific capacity, unsatisfied fast charging capability, and wide temperature range performance. In this study, we systematically examine the failure mechanisms and challenges of high-voltage LCO cathodes, evaluate recent advances in modification strategies, and outline future research directions. First, we examine the key failure mechanisms of high-voltage LCO cathodes and basic crystal and band structures, such as bulk structure failure process (e.g., complex phase transition, irreversible interlayer slippage, and crack initiation/propagation), interface failure process (e.g., cobalt migration and dissolution, oxygen release, electrolyte catalytic decomposition, HF attack, and cathode-electrolyte interphase degradation), and failure mechanisms under complex working conditions (e.g., high-voltage and fast charging, high-voltage and high-temperatures). Second, we review representative modification strategies and mechanisms, including the improvement of lithium-ion diffusivity and bulk-phase stability through bulk element doping, e.g., lithium, cobalt, oxygen, and multisite doping. The enhancement of structural stability and ionic/electronic conductivity of the surface-interface through chemical manipulation, including surface coating (e.g., ionic conductors, electronic conductors, ionic/electronic insulator materials), in-situ surface-interface structural conversion using wet-chemical and thermochemical methods, electrolyte manipulation through modified additives, and in-situ electrochemical surface-interface conversion process. The optimization of ion-electron transport in electrodes by improving adhesives, conductive agents, and electrode structures. Finally, we outline forward-looking research directions for high-voltage LCO cathodes, including (1) structural design of high-voltage LCO (>4.6 V); (2) design and control of high-voltage (>4.6 V) LCO-electrolyte interface; (3) synthesis of LCO for high-voltage fast charging (>4.6 V, > 50 C) and high-voltage wide operating temperature range (>4.6 V, -60—70 ℃); (4) optimization mechanism of modified LCO via advanced in-situ characterization and simulation; and (5) system design and cell construction of high-specific energy fast charging and high-specific energy wide temperature batteries. This review provides comprehensive insights and theoretical guidance for designing high-voltage LCO cathodes and other layered cathode materials for next-generation LIBs.

Key words: lithium cobalt oxide, high-voltage, fast charging, wide temperature range, lithium-ion battery

中图分类号: