储能科学与技术 ›› 2025, Vol. 14 ›› Issue (6): 2442-2450.doi: 10.19799/j.cnki.2095-4239.2025.0090

• 储能系统与工程 • 上一篇    下一篇

计及SOH的全钒液流电池并联控制策略

张红1(), 李金中1, 李鑫2, 张媛2   

  1. 1.国网安徽省电力有限公司电力科学研究院,安徽 合肥 230601
    2.合肥工业大学电气与自动化工程学院,安徽 合肥 230009
  • 收稿日期:2025-02-05 修回日期:2025-02-28 出版日期:2025-06-28 发布日期:2025-06-27
  • 通讯作者: 张红 E-mail:1244001267@qq.com
  • 作者简介:张红(1996—),女,博士,工程师,研究方向为长时储能规划技术,E-mail:1244001267@qq.com
  • 基金资助:
    国网安徽省电力有限公司科技项目(B3120524000S)

Parallel control of vanadium flow battery considering state of health

Hong ZHANG1(), Jinzhong LI1, Xin LI2, Yuan ZHANG2   

  1. 1.Power Science Research Institute of State Grid Anhui Electric Power Co, Hefei 230601, Anhui, China
    2.College of Electrical and Automation Engineering, Hefei University of Techology, Heifei 230009, Anhui, China
  • Received:2025-02-05 Revised:2025-02-28 Online:2025-06-28 Published:2025-06-27
  • Contact: Hong ZHANG E-mail:1244001267@qq.com

摘要:

传统下垂控制策略忽略了储能系统的健康状态(state of health, SOH),无法保证SOH的均衡,甚至可能加剧SOH的差异。为了确保直流微电网的稳定运行并维持储能系统内部的功率平衡,需要结合储能模块的健康状态(SOH),制定并联储能系统的控制策略。本工作在现有下垂控制策略基础上提出了一种计及SOH的改进下垂法作为并联储能系统控制策略,并且引入了二次补偿环节减少母线压降,建立了改进下垂控制模型,探究了采用二次补偿环节维持系统电压稳定方面的有效性和幂指数n对功率平衡速度的影响,通过MATLAB/Simulink仿真证明了该策略在全钒液流电池并联储能系统中的有效性,为提升直流微网储能系统管理的准确性和效率提供了有效途径。

关键词: 全钒液流电池, 下垂控制, SOH, 并联控制

Abstract:

The traditional droop control strategy for energy storage systems does not consider the state of health (SOH); thus, it does not ensure SOH balance and may intensify disparities among modules. To ensure the stable operation of DC microgrids and maintain power balance in energy storage systems, there is a need for a control strategy for parallel energy storage systems that incorporates the SOH of the storage modules. Herein, we propose an improved droop control method that considers SOH as a control strategy for parallel energy storage systems. The proposed method employs a secondary compensation mechanism to reduce bus voltage drop. Furthermore, we developed an improved droop control model. We evaluated the effectiveness of the secondary compensation mechanism in maintaining system voltage stability and examined the impact of the exponential factor n on the speed of power balancing. The proposed strategy was validated through MATLAB/Simulink simulations, demonstrating its effectiveness in vanadium flow battery (VFB) parallel energy storage systems. This study provides a promising approach for improving the accuracy and efficiency of energy storage system management in DC microgrids.

Key words: vanadium flow battery, droop control, SOH, parallel control

中图分类号: