[1] |
LEI S Y, SUN W, YANG Y. Comprehensive technology for recycling and regenerating materials from spent lithium iron phosphate battery[J]. Environmental Science & Technology, 2024, 58(8): 3609-3628. DOI: 10.1021/acs.est.3c08585.
|
[2] |
BANDINI G, CAPOSCIUTTI G, MARRACCI M, et al. Characterization of lithium-batteries for high power applications[J]. Journal of Energy Storage, 2022, 50: 104607. DOI: 10.1016/j.est.2022.104607.
|
[3] |
陈海生, 李泓, 徐玉杰, 等. 2023年中国储能技术研究进展[J]. 储能科学与技术, 2024, 13(5): 1359-1397. DOI: 10.19799/j.cnki.2095-4239.2024.0441.
|
|
CHEN H S, LI H, XU Y J, et al. Research progress on energy storage technologies of China in 2023[J]. Energy Storage Science and Technology, 2024, 13(5): 1359-1397. DOI: 10.19799/j.cnki.2095-4239.2024.0441.
|
[4] |
ZHOU Z Z, LI M Y, ZHOU X D, et al. Investigating thermal runaway characteristics and trigger mechanism of the parallel lithium-ion battery[J]. Applied Energy, 2023, 349: 121690. DOI: 10.1016/j.apenergy.2023.121690.
|
[5] |
李存璞, 唐晓霞, 魏子栋. 锂离子电池的热失控与预防[J]. 科技导报, 2024, 42(12): 178-192. DOI: 10.3981/j.issn.1000-7857.2024.03. 01161.
|
|
LI C P, TANG X X, WEI Z D. Thermal runaway and prevention of lithium-ion batteries[J]. Science & Technology Review, 2024, 42(12): 178-192. DOI: 10.3981/j.issn.1000-7857.2024.03.01161.
|
[6] |
WANG Z, ZHU L, LIU J W, et al. Gas sensing technology for the detection and early warning of battery thermal runaway: A review[J]. Energy & Fuels, 2022, 36(12): 6038-6057. DOI: 10.1021/acs.energyfuels.2c01121.
|
[7] |
崔潇丹, 丛晓民, 赵林双. 锂离子电池热失控气体及燃爆危险性研究进展[J]. 电池, 2021, 51(4): 407-411. DOI: 10.19535/j.1001-1579. 2021.04.020.
|
|
CUI X D, CONG X M, ZHAO L S. Research progress in thermal runaway gases and explosion hazards of Li-ion battery[J]. Battery Bimonthly, 2021, 51(4): 407-411. DOI: 10.19535/j.1001-1579. 2021.04.020.
|
[8] |
贺丹, 胡雄雄, 崔豪. 锂离子电池热失控消防技术研究进展[J]. 湖南电力, 2024, 44(3): 25-33.
|
|
HE D, HU X X, CUI H. Research progress on safety performance improvement of lithium-ion batteries[J]. Hunan Electric Power, 2024, 44(3): 25-33.
|
[9] |
KONG D P, LYU H P, PING P, et al. A review of early warning methods of thermal runaway of lithium ion batteries[J]. Journal of Energy Storage, 2023, 64: 107073. DOI: 10.1016/j.est.2023. 107073.
|
[10] |
CUI Y, SHI D, WANG Z, et al. Thermal runaway early warning and risk estimation based on gas production characteristics of different types of lithium-ion batteries[J]. Batteries, 2023, 9(9): 438. DOI: 10.3390/batteries9090438.
|
[11] |
SRINIVASAN R, DEMIREV P A, CARKHUFF B G. Rapid monitoring of impedance phase shifts in lithium-ion batteries for hazard prevention[J]. Journal of Power Sources, 2018, 405: 30-36. DOI: 10.1016/j.jpowsour.2018.10.014.
|
[12] |
LI Y X, JIANG L H, ZHANG N J, et al. Early warning method for thermal runaway of lithium-ion batteries under thermal abuse condition based on online electrochemical impedance monitoring[J]. Journal of Energy Chemistry, 2024, 92: 74-86. DOI: 10.1016/j.jechem.2023.12.049.
|
[13] |
GULSOY B, CHEN H, BRIGGS C, et al. Real-time simultaneous monitoring of internal temperature and gas pressure in cylindrical cells during thermal runaway[J]. Journal of Power Sources, 2024, 617: 235147. DOI: 10.1016/j.jpowsour.2024.235147.
|
[14] |
MEI W X, LIU Z, WANG C D, et al. operando monitoring of thermal runaway in commercial lithium-ion cells via advanced lab-on-fiber technologies[J]. Nature Communications, 2023, 14: 5251. DOI: 10.1038/s41467-023-40995-3.
|
[15] |
LI K J, CHEN L, HAN X B, et al. Early warning for thermal runaway in lithium-ion batteries during various charging rates: Insights from expansion force analysis[J]. Journal of Cleaner Production, 2024, 457: 142422. DOI: 10.1016/j.jclepro.2024.142422.
|
[16] |
LIN C J, MAO J B, ZHANG X T, et al. A study of expansion force propagation characteristics and early warning feasibility for the thermal diffusion process of lithium-ion battery modules[J]. Journal of Energy Storage, 2024, 98: 113076. DOI: 10.1016/j.est. 2024.113076.
|
[17] |
LARSSON F, BERTILSSON S, FURLANI M, et al. Gas explosions and thermal runaways during external heating abuse of commercial lithium-ion graphite-LiCoO2 cells at different levels of ageing[J]. Journal of Power Sources, 2018, 373: 220-231. DOI: 10.1016/j.jpowsour.2017.10.085.
|
[18] |
ZHANG Y J, WANG H W, LI W F, et al. Quantitative identification of emissions from abused prismatic Ni-rich lithium-ion batteries[J]. eTransportation, 2019, 2: 100031. DOI: 10.1016/j.etran. 2019.100031.
|
[19] |
YUAN L M, DUBANIEWICZ T, ZLOCHOWER I, et al. Experimental study on thermal runaway and vented gases of lithium-ion cells[J]. Process Safety and Environmental Protection, 2020, 144: 186-192. DOI: 10.1016/j.psep.2020.07.028.
|
[20] |
SHEN H J, WANG H W, LI M H, et al. Thermal runaway characteristics and gas composition analysis of lithium-ion batteries with different LFP and NCM cathode materials under inert atmosphere[J]. Electronics, 2023, 12(7): 1603. DOI: 10. 3390/electronics12071603.
|
[21] |
STURK D, ROSELL L, BLOMQVIST P, et al. Analysis of Li-ion battery gases vented in an inert atmosphere thermal test chamber[J]. Batteries, 2019, 5(3): 61. DOI: 10.3390/batteries5030061.
|
[22] |
陈达, 郝朝龙, 刘添添, 等. 锂离子电池热失控气体拉曼光谱分析方法研究[J]. 中国激光, 2022, 49(23): 2311001.
|
|
CHEN D, HAO C L, LIU T T, et al. Raman spectrum analysis method of thermal runaway gas from lithium-ion batteries[J]. Chinese Journal of Lasers, 2022, 49(23): 2311001.
|
[23] |
ZHANG Q S, LIU T T, HAO C L, et al. In situ Raman investigation on gas components and explosion risk of thermal runaway emission from lithium-ion battery[J]. Journal of Energy Storage, 2022, 56: 105905. DOI: 10.1016/j.est.2022.105905.
|
[24] |
张青松, 曲奕润, 郝朝龙, 等. 三元锂离子电池热失控气体原位分析[J]. 高电压技术, 2022, 48(7): 2817-2825. DOI: 10.13336/j.1003-6520.hve.20211850.
|
|
ZHANG Q S, QU Y R, HAO C L, et al. In-situ analysis of thermal runaway gas in ternary lithium-ion battery[J]. High Voltage Engineering, 2022, 48(7): 2817-2825. DOI: 10.13336/j.1003-6520.hve.20211850.
|
[25] |
JIN Y, ZHENG Z K, WEI D H, et al. Detection of micro-scale Li dendrite via H2 gas capture for early safety warning[J]. Joule, 2020, 4(8): 1714-1729. DOI: 10.1016/j.joule.2020.05.016.
|
[26] |
王铭民, 孙磊, 郭鹏宇, 等. 基于气体在线监测的磷酸铁锂储能电池模组过充热失控特性[J]. 高电压技术, 2021, 47(1): 279-286. DOI: 10.13336/j.1003-6520.hve.20200227004.
|
|
WANG M M, SUN L, GUO P Y, et al. Overcharge and thermal runaway characteristics of lithium iron phosphate energy storage battery modules based on gas online monitoring[J]. High Voltage Engineering, 2021, 47(1): 279-286. DOI: 10.13336/j.1003-6520.hve.20200227004.
|
[27] |
杨梦洁, 杨爱军, 叶奕君, 等. 基于气体分析的锂离子电池热失控早期预警研究进展[J]. 电工技术学报, 2023, 38(17): 4507-4538. DOI: 10.19595/j.cnki.1000-6753.tces.220832.
|
|
YANG M J, YANG A J, YE Y J, et al. Research progress on early warning of thermal runaway of Li-ion batteries based on gas analysis[J]. Transactions of China Electrotechnical Society, 2023, 38(17): 4507-4538. DOI: 10.19595/j.cnki.1000-6753.tces.220832.
|
[28] |
卫寿平, 孙杰, 李吉刚, 等. 锂离子电池热失控气体产物检测及分析技术研究进展[J]. 储能科学与技术, 2024, 13(11): 4155-4176. DOI: 10.19799/j.cnki.2095-4239.2024.0537.
|
|
WEI S P, SUN J, LI J G, et al. Research progress on detection and analysis of thermal runaway gas products from lithium-ion batteries[J]. Energy Storage Science and Technology, 2024, 13(11): 4155-4176. DOI: 10.19799/j.cnki.2095-4239.2024.0537.
|
[29] |
FU Y Y, LU S, LI K Y, et al. An experimental study on burning behaviors of 18650 lithium ion batteries using a cone calorimeter[J]. Journal of Power Sources, 2015, 273: 216-222. DOI: 10.1016/j.jpowsour.2014.09.039.
|
[30] |
郭东亮, 刘洋, 肖鹏, 等. 储能电站用锂离子电池热失控早期预警参数研究[J]. 消防科学与技术, 2020, 39(8): 1156-1159.
|
|
GUO D L, LIU Y, XIAO P, et al. Research on early warning parameters of thermal runaway of lithium ion battery for energy storage power station[J]. Fire Science and Technology, 2020, 39(8): 1156-1159.
|
[31] |
WANG X X, LI Q T, ZHOU X Y, et al. Monitoring thermal runaway of lithium-ion batteries by means of gas sensors[J]. Sensors and Actuators B: Chemical, 2024, 411: 135703. DOI: 10.1016/j.snb. 2024.135703.
|