储能科学与技术 ›› 2025, Vol. 14 ›› Issue (7): 2820-2832.doi: 10.19799/j.cnki.2095-4239.2025.0016

• 第十三届储能国际峰会暨展览会专辑 • 上一篇    下一篇

锂离子电池热失控气体检测分析及预警

张子敬(), 原蓓蓓(), 李红, 高颖   

  1. 安徽国轩新能源汽车科技有限公司,安徽 合肥 230011
  • 收稿日期:2025-01-06 修回日期:2025-02-14 出版日期:2025-07-28 发布日期:2025-07-11
  • 通讯作者: 原蓓蓓 E-mail:zhangzijing@gotion.com.cn;yuanbeibei@gotion.com.cn
  • 作者简介:张子敬(1997—),女,硕士,工程师,主要研究方向为锂离子电池安全性,E-mail:zhangzijing@gotion.com.cn

Thermal runaway gas detection and early warning of lithium-ion batteries

Zijing ZHANG(), Beibei YUAN(), Hong LI, Ying GAO   

  1. Anhui Gotion New Energy Vehicle Technology Co. , Ltd. , Hefei 230011, Anhui, China
  • Received:2025-01-06 Revised:2025-02-14 Online:2025-07-28 Published:2025-07-11
  • Contact: Beibei YUAN E-mail:zhangzijing@gotion.com.cn;yuanbeibei@gotion.com.cn

摘要:

锂离子电池发生热失控时会产生有毒易燃气体,在增加窒息风险的同时也会造成严重的火灾和爆炸事故,因此通过气体检测实现热失控预警对电池单体及系统层级的安全设计都具有重要意义。本工作使用激光拉曼光谱分析仪实时原位检测不同正极材料和不同荷电状态(SOC)锂离子电池单体热失控产气组分和浓度变化,结果显示,不同SOC下磷酸铁锂电池(LFP)产气响应都主要集中在电池开阀与热失控之间,而三元锂离子电池(NCM)产气响应多集中出现在热失控后,表明将H2、CO、CO2、CH4、C2H4作为特征气体检测对象,通过气体检测技术为电池的热失控提供早期预警具备理论可行性。本工作进一步将以上特征气体用于电池包层级的热失控气体检测及预警验证,使用CO2和CO/H2/HC复合型气体传感器实时原位检测电池包内部不同位置的热失控气体浓度变化,气体浓度信息通过气体传感器收集并上传到电池管理系统(BMS)中,通过对比电池包盖板温度、电压变化与气体信号的响应情况,确认气体预警热失控在电池包中的可行性。实验结果显示:①气体响应速度与传感器和触发电池之间的距离呈负相关;②CO/H2/HC比CO2响应更快速,但即使最远检测位置的CO2气体也可在热失控前至少578 s响应,进一步表明气体预警电池早期热失控的有效性;③与传统BMS的温度和电压相比,气体信号在响应速度上仍具有一定的竞争力。本工作研究了LFP和NCM电池单体热失控过程的产气情况,并在对应体系电池包中进行了气体预警验证,结果证明了气体传感技术在LFP和NCM电池包内的热失控预警均具有高及时率,为锂离子电池热失控早期预警技术研究提供了重要实例参考。

关键词: 锂离子电池, 热失控, 气体检测, 气体预警

Abstract:

Thermal runaway of lithium-ion batteries (LIBs) is a significant safety concern because of the release of highly toxic and flammable gases. These hazardous emissions can increase the risk of asphyxiation and cause serious fire accidents. Therefore, using gas detection for early warning of thermal runaway is crucial for the safety design of battery cells and packs. In this study, a laser Raman spectroscopy analyzer was used to detect the composition and concentration of thermal runaway gases emitted by LIBs with different cathode materials at various states of charge (SOC). The results demonstrate that the gas signal of a lithium iron phosphate battery (LFP) is primarily concentrated between the opening of the battery valve and thermal runaway under different SOC conditions. In contrast, nickel cobalt manganese batteries (NCM) mainly showed gas signals after thermal runaway. These findings indicate that H2, CO, CO2, CH4, and C2H4 are theoretically feasible as characteristic gases for providing early warning of thermal runaway in batteries. Based on the experimental results for the battery cells, the above characteristic gases were further used for thermal runaway gas detection and early warning verification in the battery packs. A composite gas sensor that can measure CO2 and CO/H2/HC concentrations in real-time was used to detect characteristic gas changes at different locations inside battery packs. The gas concentration information was collected and uploaded to the battery management system (BMS). Compared with traditional cell temperature and voltage monitoring, gas signals provide a practical and effective method for the early warning of thermal runaway in battery packs. The results demonstrate that: ① the gas signal is negatively correlated with the distance between the sensor and the thermal runaway trigger battery. ② The CO/H2/HC signals are faster than CO2. Remarkably, even at the farthest detection location, CO2 gas can send an alarm signal at least 578 s before thermal runaway, demonstrating the effectiveness of gas-based early warning. ③ Compared with the temperature and voltage of traditional BMSs, gas signals offer a considerable competitive advantage for thermal runaway warnings. This study investigates gas generation during the thermal runaway process in LFP and NCM battery cells to verify the gas-based early warning system in their corresponding battery packs. The results demonstrate that gas-sensing technology can provide timely warning of thermal runaway in both LFP and NCM battery packs, providing a crucial reference for the development of LIB thermal-runaway early warning technology.

Key words: lithium-ion battery, thermal runaway, gas detection, gas early warning

中图分类号: