储能科学与技术 ›› 2025, Vol. 14 ›› Issue (8): 3170-3184.doi: 10.19799/j.cnki.2095-4239.2025.0027

• 储能系统与工程 • 上一篇    

考虑电动汽车的新型电力系统源荷日前-日内低碳优化调度

李若琼1(), 司宇杰1, 李欣2()   

  1. 1.兰州交通大学自动化与电气工程学院
    2.兰州交通大学新能源与动力工程学院,甘肃 兰州 730070
  • 收稿日期:2025-01-07 修回日期:2025-02-14 出版日期:2025-08-28 发布日期:2025-08-18
  • 通讯作者: 李欣 E-mail:liruoqiong26@163.com;lxfp167@163.com
  • 作者简介:李若琼(1979—),女,硕士,教授,研究方向为新型电能变换技术和电工理论新技术,E-mail:liruoqiong26@163.com
  • 基金资助:
    国家自然科学基金项目(51767015);甘肃省自然科学基金重点项目(22JR5RA317);甘肃省自然科学基金重点项目(25JRRA149)

A novel day-ahead-intraday low-carbon optimal scheduling method for power system source-load dispatch based on the demand response characteristics of electric vehicles

Ruoqiong LI1(), Yujie SI1, Xin LI2()   

  1. 1.School of Automation and Electrical Engineering, Lanzhou Jiaotong University
    2.School of New Energy and Power Engineering, Lanzhou Jiaotong University, Lanzhou 730070, Gansu, China
  • Received:2025-01-07 Revised:2025-02-14 Online:2025-08-28 Published:2025-08-18
  • Contact: Xin LI E-mail:liruoqiong26@163.com;lxfp167@163.com

摘要:

电动汽车作为柔性负荷参与新型电力系统的优化调度可提高新能源消纳,为加快构建新型电力系统提供了一种新途径。针对电动汽车同时参与价格型需求响应与激励型需求响应的新型电力系统源荷低碳优化调度问题,本工作基于麻雀搜索算法优化卷积长短时记忆神经网络,给出一种考虑电动汽车需求响应特性的新型电力系统源荷日前-日内低碳优化调度方法。首先,对新能源和基本负荷历史数据利用麻雀搜索算法优化卷积长短时记忆神经网络进行预测,降低源荷两侧的不确定性对新型电力系统日前-日内优化调度的影响;其次,以电动汽车参与需求响应的充电特性,将电动汽车分为三类充电模式,考虑阶梯式碳交易的系统总成本和污染气体排放最优为目标构建源荷互动的日前-日内两阶段低碳环境经济调度模型;最后,利用改进多目标灰狼算法对模型进行求解。算例分析选取典型日的光伏、风电与负荷数据,并综合考虑了电动汽车不同充电模式的需求响应特性。通过4种运行场景下的优化调度结果可知,场景4与场景1相比,较传统方法总成本降低10.3%、污染物排放减少10.9%、新能源消纳提高4.2%,日前-日内低碳优化调度方法可有效提高新能源消纳和新型电力系统的低碳环境经济综合效益。

关键词: 电动汽车, 源荷预测, 新型电力系统, 日前-日内优化调度, 低碳优化调度

Abstract:

Electric vehicles (EVs), as flexible loads in the optimal scheduling of new power systems, can enhance the utilization of new energy and offer a new way to accelerating the development of next-generation power infrastructure. To address the low-carbon optimal scheduling challenge involving sources and loads, where EVs participate in price- and incentive-based demand response, this study proposes a new day-ahead-intraday low-carbon optimal scheduling method. The approach leverages the demand response characteristics of EVs and employs the sparrow search algorithm (SSA) to optimize a convolutional long short-term memory neural network (ConvLSTM NN). First, the historical data of new energy generation and base load are predicted using the SSA-optimized ConvLSTM NN, thereby reducing the influence of uncertainties on the supply and demand sides in the day-ahead-intraday scheduling of new power systems. Next, three types of EV charging modes are defined based on their charging characteristics observed under demand response participation. A two-stage low-carbon environmental-economic dispatch model for source-load interaction is then developed, incorporating the total system cost under ladder-type carbon trading and the optimal control of pollutant emissions. Finally, an improved multiobjective gray wolf algorithm is employed to solve the model. For validation, typical daily data on photovoltaic power, wind power, and loads are used in the case analysis, which also fully considers the demand response characteristics of the various EV charging modes. The optimal scheduling results across four operating scenarios show that, compared with Scenario 1, Scenario 4 achieves a 10.3% reduction in total cost, a 10.9% decrease in pollutant emissions, and a 4.2% increase in new energy consumption. Overall, the proposed day-ahead-intraday low-carbon optimal scheduling method effectively enhances the environmental and economic benefits of new energy utilization in modern power systems.

Key words: electric vehicles, source-load prediction, new power system, day-ahead-intraday optimal scheduling, low carbon optimal scheduling

中图分类号: