储能科学与技术 ›› 2020, Vol. 9 ›› Issue (6): 1629-1640.doi: 10.19799/j.cnki.2095-4239.2020.0144

• 储能材料与器件 • 上一篇    下一篇

锂金属电池电解液组分调控的研究进展

冯建文1(), 胡时光1,3, 韩 兵2, 肖映林2, 邓永红2(), 王朝阳1()   

  1. 1.华南理工大学材料科学研究所,广东 广州 510640
    2.南方科技大学材料科学与工程系,广东 深圳 518055
    3.深圳新宙邦科技股份有限公司,广东 深圳 518118
  • 收稿日期:2020-04-15 修回日期:2020-04-23 出版日期:2020-11-05 发布日期:2020-10-28
  • 通讯作者: 邓永红,王朝阳 E-mail:738326612@qq.com;yhdeng08@163.com;zhywang@scut.edu.cn
  • 作者简介:冯建文(1994—),男,硕士研究生,主要研究方向为锂金属电池电解液,E-mail:738326612@qq.com
  • 基金资助:
    广东省重点领域研发计划项目(2020B090919001);广东省自然科学基金项目(2019A1515010595)

Research progress of electrolyte optimization for lithium metal batteries

Jianwen FENG1(), Shiguang HU1,3, Bing HAN2, Yinglin XIAO2, Yonghong DENG2(), Chaoyang WANG1()   

  1. 1.Research Institute of Materials Science, South China University of Technology, Guangzhou 510640, Guangdong, China
    2.Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, Guangdong, China
    3.Shenzhen Capchem Technology Co. , Ltd. , Shenzhen 518118, Guangdong, China
  • Received:2020-04-15 Revised:2020-04-23 Online:2020-11-05 Published:2020-10-28
  • Contact: Yonghong DENG,Chaoyang WANG E-mail:738326612@qq.com;yhdeng08@163.com;zhywang@scut.edu.cn

摘要:

锂金属电池因其极高的能量密度而受到广泛关注。然而,高活性的锂金属负极与有机电解液之间的副反应,以及不受控制的锂枝晶生长给锂金属电池带来严重的安全隐患,从而阻碍了锂金属电池的发展。锂金属表面不稳定的固态电解质界面膜(SEI)以及由此产生的不均匀锂沉积是这些问题的根源。作为锂金属电池的重要组成部分,液体电解液与锂金属负极的相容性,以及液体电解液本身的性质决定了锂金属电池的实用性。本文首先介绍了液体电解液在锂金属电池中的作用机理,然后从添加剂、导电锂盐及有机溶剂三个方面介绍了近年来与锂金属电池电解液组分调控相关的研究进展。对于液体电解液添加剂,主要介绍了成膜添加剂和调控锂沉积行为的添加剂。对于导电锂盐,主要介绍了新型锂盐、混合锂盐以及锂盐浓度调控3种策略。对于有机溶剂,主要介绍了碳酸酯类溶剂、磷酸酯类溶剂和醚类溶剂对锂金属电池的影响。结果表明,调控电解液组分可以改善锂沉积的行为以及SEI膜的组分和性质,是解决上述问题最简便、最有效的策略之一。最后,本文还展望了该领域未来的研究方向。

关键词: 锂金属电池, 锂金属负极, 电解液

Abstract:

As an anode material, the Li metal battery with metallic lithium has attracted tremendous attention for its extremely high-energy density. However, the development of Li metal batteries has been hindered by the parasitic reactions between metallic lithium and organic electrolytes and the uncontrolled growth of dendritic lithium, which brings serious safety hazards to Li metal batteries. The root causes of these challenges are the unstable solid electrolyte interphase (SEI) layer formed on the metallic lithium surface and the inhomogeneous Li deposition. Liquid electrolyte is a key component of a lithium metal battery. The compatibility of the liquid electrolyte with the lithium metal anode and the property of the liquid electrolyte determine the practicality of the lithium metal battery. This review first introduces the function mechanism of the liquid electrolyte in lithium metal batteries and presents recent progress of electrolyte regulation for Li metal batteries from three aspects of additives, conductive lithium salts, and organic solvents. The film-forming additives and those manipulating the lithium deposition behavior for liquid electrolyte additives are highlighted. Three strategies for conductive lithium salts are introduced: novel lithium salts; mixed lithium salts; and regulation of the lithium salt concentration. For organic solvents, the effects of carbonate, phosphate, and ether solvents on lithium metal batteries are introduced. Electrolyte optimization proves its effectiveness in regulating the Li deposition behavior and the SEI layer composition, which is one of the most facile and effective strategies for alleviating the abovementioned issues. Finally, we prospect the future research directions in this field.

Key words: lithium metal battery, lithium metal anode, electrolyte

中图分类号: