储能科学与技术 ›› 2022, Vol. 11 ›› Issue (9): 2995-3002.doi: 10.19799/j.cnki.2095-4239.2022.0150

• 创刊十周年专刊 • 上一篇    下一篇

基于电化学阻抗特征选择和高斯过程回归的锂离子电池健康状态估计方法

陈晓宇1(), 耿萌萌2, 王乾坤1, 沈佳妮1, 贺益君1(), 马紫峰1   

  1. 1.上海交通大学化学工程系,上海 200240
    2.中国电力科学研究院有限公司,北京 100192
  • 收稿日期:2022-03-23 修回日期:2022-04-26 出版日期:2022-09-05 发布日期:2022-08-30
  • 通讯作者: 贺益君 E-mail:chenxiaoyu1997@sjtu.edu.cn;heyijun@sjtu.edu.cn
  • 作者简介:陈晓宇(1998—),男,硕士研究生,从事电池健康状态研究,E-mail:chenxiaoyu1997@sjtu.edu.cn
  • 基金资助:
    国家电网公司总部科技项目“基于交流阻抗的储能电池状态在线感知技术研究”(5419-202055246A-0-0-00)

Electrochemical impedance feature selection and gaussian process regression based on the state-of-health estimation method for lithium-ion batteries

Xiaoyu CHEN1(), Mengmeng GENG2, Qiankun WANG1, Jiani SHEN1, Yijun HE1(), Zifeng MA1   

  1. 1.Department of Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
    2.China Electric Power Research Institute, Beijing 100192, China
  • Received:2022-03-23 Revised:2022-04-26 Online:2022-09-05 Published:2022-08-30
  • Contact: Yijun HE E-mail:chenxiaoyu1997@sjtu.edu.cn;heyijun@sjtu.edu.cn

摘要:

电化学阻抗谱(electrochemical impedance spectroscopy,EIS)蕴含丰富的电池健康状态(state of health,SOH)信息,但不同频率的电化学阻抗数据间并不相互独立,直接利用全频段EIS数据构建SOH估计模型,往往存在精度低、计算复杂度高等问题。鉴于此,本文提出了一种基于特征选择和高斯过程回归的SOH估计方法,可通过序贯前向搜索策略,结合交叉验证均方根误差指标,逐步搜索阻抗特征子集。基于此,采用基于水平图的多目标可视化决策方法,以均衡模型复杂度与精度为目标,综合考虑特征个数与交叉验证均方根误差,实施阻抗特征子集优选。所提方法已成功地应用于公开发表数据集。相比全频段EIS建模方法,本文作者所提方法可显著提升SOH估计精度,大幅降低EIS测试时间,为电化学阻抗技术应用于SOH在线估计提供理论和技术支撑。

关键词: 锂离子电池, 健康状态, 电化学阻抗谱, 特征选择, 高斯过程回归

Abstract:

Electrochemical impedance spectroscopy (EIS) contains rich information about the battery state of health (SOH). However, due to the correlation of EIS data at different frequencies, the SOH estimation model constructed from the whole frequency range of EIS data may have poor performance and high complexity. Therefore, this study proposes an SOH estimation method with feature selection and Gaussian process regression by combining sequential forward search and cross-validation to seek the feature set. A level diagram method was adopted to formulate model performance evaluation indicators based on the number of features and the estimation error, which aimed to balance model complexity and model estimation accuracy. A public dataset was used to validate the proposed method, and the results showed that the proposed model with feature selection could achieve higher accuracy and less time for the EIS test than the model constructed from the whole frequency range of EIS data. This study provides theoretical and technical support for applying EIS to online SOH estimation.

Key words: lithium-ion battery, state of health, electrochemical impedance spectroscopy, feature selection, gaussian process regression

中图分类号: