1 |
WANG J X, LIANG Z, ZHAO Y, et al. Direct conversion of degraded LiCoO2 cathode materials into high-performance LiCoO2: A closed-loop green recycling strategy for spent lithium-ion batteries[J]. Energy Storage Materials, 2022, 45: 768-776.
|
2 |
CHANG Z, QIAO Y, YANG H J, et al. Sustainable lithium-metal battery achieved by a safe electrolyte based on recyclable and low-cost molecular sieve[J]. Angewandte Chemie (International Ed in English), 2021, 60(28): 15572-15581.
|
3 |
NUMATA K, SAKAKI C, YAMANAKA S. Synthesis of solid solutions in a system of LiCoO2-Li2MnO3for cathode materials of secondary lithium batteries[J]. Chemistry Letters, 1997, 26(8): 725-726.
|
4 |
KALYANI P, CHITRA S, MOHAN T, et al. Lithium metal rechargeable cells using Li2MnO3 as the positive electrode[J]. Journal of Power Sources, 1999, 80(1/2): 103-106.
|
5 |
YU H J, SO Y G, KUWABARA A, et al. Crystalline grain interior configuration affects lithium migration kinetics in Li-rich layered oxide[J]. Nano Letters, 2016, 16(5): 2907-2915.
|
6 |
GRIMAUD A, HONG W T, SHAO-HORN Y, et al. Anionic redox processes for electrochemical devices[J]. Nature Materials, 2016, 15(2): 121-126.
|
7 |
LI X, QIAO Y, GUO S H, et al. Direct visualization of the reversible O2 -/O- redox process in Li-rich cathode materials[J]. Advanced Materials, 2018, 30(14): doi: 10.1002/adma.201705197.
|
8 |
ZHENG H F, HAN X, GUO W B, et al. Recent developments and challenges of Li-rich Mn-based cathode materials for high-energy lithium-ion batteries[J]. Materials Today Energy, 2020, 18: doi:10.1016/j.mtener.2020.100518.
|
9 |
YU H J, ISHIKAWA R, SO Y G, et al. Direct atomic-resolution observation of two phases in the Li1.2Mn0.567Ni0.166Co0.067O2 cathode material for lithium-ion batteries[J]. Angewandte Chemie, 2013, 52(23): 5969-5973.
|
10 |
JARVIS K A, DENG Z Q, ALLARD L F, et al. Atomic structure of a lithium-rich layered oxide material for lithium-ion batteries: Evidence of a solid solution[J]. Chemistry of Materials, 2011, 23(16): 3614-3621.
|
11 |
LI B, XIA D G. Anionic redox in rechargeable lithium batteries[J]. Advanced Materials, 2017, 29(48): doi: 10.1002/adma.201701054.
|
12 |
康若彤, 肖晶, 孙一诺, 等. 阴离子氧化还原反应对富锂层状材料性能影响研究进展[J]. 聊城大学学报(自然科学版), 2021, 34(2): 49-58.
|
|
KANG R T, XIAO J, SUN Y N, et al. Research development on the effect of anionic redox reaction on the properties of Li-rich layered materials[J]. Journal of Liaocheng University (Natural Science Edition), 2021, 34(2): 49-58.
|
13 |
SEO D H, LEE J, URBAN A, et al. The structural and chemical origin of the oxygen redox activity in layered and cation-disordered Li-excess cathode materials[J]. Nature Chemistry, 2016, 8(7): 692-697.
|
14 |
LI Q Y, DE NING, WONG D, et al. Improving the oxygen redox reversibility of Li-rich battery cathode materials via Coulombic repulsive interactions strategy[J]. Nature Communications, 2022, 13: 1123.
|
15 |
王敏君. 锂离子电池富锂锰基正极材料的制备及改性研究[D]. 哈尔滨: 哈尔滨工业大学, 2019.
|
|
WANG M J. Preparation and modification of lithium rich manganese based cathode materials for lithium ion battery[D]. Harbin: Harbin Institute of Technology, 2019.
|
16 |
CHEN Q, PEI Y, CHEN H W, et al. Highly reversible oxygen redox in layered compounds enabled by surface polyanions[J]. Nature Communications, 2020, 11: 3411.
|
17 |
HOUSE R A, REES G J, PÉREZ-OSORIO M A, et al. First-cycle voltage hysteresis in Li-rich 3d cathodes associated with molecular O2 trapped in the bulk[J]. Nature Energy, 2020, 5(10): 777-785.
|
18 |
ZHANG J C, CHENG F Y, CHOU S L, et al. Tuning oxygen redox chemistry in Li-rich Mn-based layered oxide cathodes by modulating cation arrangement[J]. Advanced Materials, 2019, 31(42): doi: 10.1002/adma.201901808.
|
19 |
TANG Z K, XUE Y F, TEOBALDI G, et al. The oxygen vacancy in Li-ion battery cathode materials[J]. Nanoscale Horizons, 2020, 5(11): 1453-1466.
|
20 |
GENT W E, LIM K, LIANG Y F, et al. Coupling between oxygen redox and cation migration explains unusual electrochemistry in lithium-rich layered oxides[J]. Nature Communications, 2017, 8: 2091.
|
21 |
XU B, FELL C R, CHI M F, et al. Identifying surface structural changes in layered Li-excess nickel manganese oxides in high voltage lithium ion batteries: A joint experimental and theoretical study[J]. Energy & Environmental Science, 2011, 4(6): 2223.
|
22 |
EUM D, KIM B, KIM S J, et al. Voltage decay and redox asymmetry mitigation by reversible cation migration in lithium-rich layered oxide electrodes[J]. Nature Materials, 2020, 19(4): 419-427.
|
23 |
MOHANTY D, HUQ A, PAYZANT E A, et al. Neutron diffraction and magnetic susceptibility studies on a high-voltage Li1.2Mn0.55Ni0.15Co0.10O2 lithium ion battery cathode: Insight into the crystal structure[J]. Chemistry of Materials, 2013, 25(20): 4064-4070.
|
24 |
CUI S L, WANG Y Y, LIU S, et al. Evolution mechanism of phase transformation of Li-rich cathode materials in cycling[J]. Electrochimica Acta, 2019, 328: doi: 10.1016/j.electacta.2019.135109.
|
25 |
XIE Y, YIN J, CHEN X, et al. Synergistic effect of Mn3+ formation-migration and oxygen loss on the near surface and bulk structural changes in single crystalline lithium-rich oxides[J]. ACS Applied Materials & Interfaces, 2021, 13(3): 3891-3898.
|
26 |
VIVEKANANTHA M, SUNDHAR ARUL SARAVANAN R, KUMAR NAYAK P, et al. Synergistic-effect of high Ni content and Na dopant towards developing a highly stable Li-Rich cathode in Li-ion batteries[J]. Chemical Engineering Journal, 2022, 444: doi: 10.1016/j.cej.2022.136503.
|
27 |
ALI S E, OLSZEWSKI W, SORRENTINO A, et al. Local interactions governing the performances of lithium- and manganese-rich cathodes[J]. The Journal of Physical Chemistry Letters, 2021, 12(4): 1195-1201.
|
28 |
SHEN S Y, HONG Y H, ZHU F C, et al. Tuning electrochemical properties of Li-rich layered oxide cathode by adjusting Co/Ni ratio and mechanism investigation using in situ XRD and OEMS[J]. ACS Applied Materials & Interfaces, 2018 10(15):12666-12677.
|
29 |
LI Q Y, NING D, ZHOU D, et al. The effect of oxygen vacancy and spinel phase integration on both anionic and cationic redox in Li-rich cathode materials[J]. Journal of Materials Chemistry A, 2020, 8(16): 7733-7745.
|
30 |
PEI Y, CHEN Q, WANG M Y, et al. Reviving reversible anion redox in 3d-transition-metal Li rich oxides by introducing surface defects[J]. Nano Energy, 2020, 71: doi: 10.1016/j.nanoen.2020.104644.
|
31 |
LIU J D, WU Z H, YU M, et al. Building homogenous Li2TiO3 coating layer on primary particles to stabilize Li-rich Mn-based cathode materials[J]. Small, 2022, 18(10): doi: 10.1002/smll.202106337.
|
32 |
YU H, GAO Y, LIANG X H. Slightly fluorination of Al2O3 ALD coating on Li1.2Mn0.54Co0.13Ni0.13O2 electrodes: Interface reaction to create stable solid permeable interphase layer[J]. Journal of the Electrochemical Society, 2019, 166(10): A2021-A2027.
|
33 |
RASTGOO-DEYLAMI M, JAVANBAKHT M, OMIDVAR H. Enhanced performance of layered Li1.2Mn0.54Ni0.13Co0.13O2 cathode material in Li-ion batteries using nanoscale surface coating with fluorine-doped anatase TiO2[J]. Solid State Ionics, 2019, 331: 74-88.
|
34 |
ZHOU Z W, LUO Z Y, HE Z J, et al. Suppress voltage decay of lithium-rich materials by coating layers with different crystalline states[J]. Journal of Energy Chemistry, 2021, 60: 591-598.
|
35 |
DING X, LI Y X, CHEN F, et al. In situ formation of LiF decoration on a Li-rich material for long-cycle life and superb low-temperature performance[J]. Journal of Materials Chemistry A, 2019, 7(18): 11513-11519.
|
36 |
NIU B B, LI J L, LIU Y Y, et al. Re-understanding the function mechanism of surface coating: Modified Li-rich layered Li1.2Mn0.54Ni0.13Co0.13O2 cathodes with YF3 for high performance lithium-ions batteries[J]. Ceramics International, 2019, 45(9): 12484-12494.
|
37 |
SU Y F, YUAN F Y, CHEN L, et al. Enhanced high-temperature performance of Li-rich layered oxide via surface heterophase coating[J]. Journal of Energy Chemistry, 2020, 51: 39-47.
|
38 |
NIE X K, HOU G M, XU Z, et al. Lewis acidity organoboron-modified Li-rich cathode materials for high-performance lithium-ion batteries[J]. Advanced Materials Interfaces, 2021, 8(9): doi: 10.1002/admi.202002113.
|
39 |
PENG J, LI Y, CHEN Z, et al. Phase compatible NiFe2O4 coating tunes oxygen redox in Li-rich layered oxide[J]. ACS Nano, 2021: 11607-11618.
|
40 |
YIN C, WEN X H, WAN L Y, et al. Surface reinforcement doping to suppress oxygen release of Li-rich layered oxides[J]. Journal of Power Sources, 2021, 503: doi: 10.1016/j.jpowsour.2021.230048.
|
41 |
MENG J X, XU L S, MA Q X, et al. Modulating crystal and interfacial properties by W-gradient doping for highly stable and long life Li-rich layered cathodes[J]. Advanced Functional Materials, 2022, 32(19): doi: 10.1002/adfm.202113013.
|
42 |
HU K H, REN L, FAN W F, et al. Tuning redox activity through delithiation induced protective layer and Fe-O coordination for Li-rich cathode with improved voltage and cycle performance[J]. Journal of Energy Chemistry, 2022, 71: 266-276.
|
43 |
LI S Y, FU X L, LIANG Y W, et al. Enhanced structural stability of boron-doped Layered@Spinel@Carbon heterostructured lithium-rich manganese-based cathode materials[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(25): 9311-9324.
|