储能科学与技术 ›› 2023, Vol. 12 ›› Issue (2): 515-528.doi: 10.19799/j.cnki.2095-4239.2022.0586
杨水丽1(), 来小康1, 丁涛2, 王则凯2, 陈继忠1, 诸嘉慧1, 李婷婷3
收稿日期:
2022-10-12
修回日期:
2022-11-07
出版日期:
2023-02-05
发布日期:
2023-02-24
通讯作者:
杨水丽
E-mail:40303126@qq.com
作者简介:
杨水丽(1979—),女,硕士,高级工程师,研究方向为规模化储能技术及其应用,E-mail:40303126@qq.com。
基金资助:
Shuili YANG1(), Xiaokang LAI1, Tao DING2, Zekai WANG2, Jizhong CHEN1, Jiahui ZHU1, Tingting LI3
Received:
2022-10-12
Revised:
2022-11-07
Online:
2023-02-05
Published:
2023-02-24
Contact:
Shuili YANG
E-mail:40303126@qq.com
摘要:
3060双碳目标将推进我国能源转型进程,新能源高渗透率为电网带来的不确定性与复杂性使其对日常运行时备用调节电源需求和应对极端自然灾害与人为攻击时的弹性需求增高,因而促使新型储能技术在电网快速规模化应用。本文讨论了在极端事件下,储能在弹性电网中的应用。首先,从新型储能装置的发展动态和对弹性需求的支撑出发,结合弹性电网概念内涵、衡量要素和极端事件特性,探讨了储能在弹性电网中的需求必要性和应用目标,提出了储能在极端事件下弹性承受和恢复两个阶段中的作用过程、作用机制和调节目标。其次,分析了广域布局储能的聚合容量与弹性电网承载能力之间的关系,研究了储能对灾后网架重构的影响,以及弹性指标评价框架等,提出了储能在弹性应用中的规划、调控、量化指标和市场机制制定等关键技术研究点。针对极端事件的应用需求、储能的运行性能与经济特性,提出了未来新型储能系统的适用典型场景。最后,对我国储能在弹性电网中的应用前景进行了展望。
中图分类号:
杨水丽, 来小康, 丁涛, 王则凯, 陈继忠, 诸嘉慧, 李婷婷. 新型储能技术在弹性电网中的应用与展望[J]. 储能科学与技术, 2023, 12(2): 515-528.
Shuili YANG, Xiaokang LAI, Tao DING, Zekai WANG, Jizhong CHEN, Jiahui ZHU, Tingting LI. Application and prospect of new energy storage technologies in resilient power systems[J]. Energy Storage Science and Technology, 2023, 12(2): 515-528.
表1
新型储能技术应用现状"
应用领域 | 应用场景 | 应用目标 | 适用储能技术[ |
---|---|---|---|
电源侧 | 新能源资源富集地区、新能源高渗透率地区、常规发电厂、退役火电厂址等 | 促进友好型新能源站建设,支撑高比例可再生能源基地外送,提升常规电源调节能力 | 电化学储能、机械储能、热储能、氢储能等 |
电网侧 | 大规模新能源汇集、调峰调频困难和支撑能力不足的关键电网节点、供电能力不足的偏远地区、输电走廊资源和变电站站址资源紧张地区 | 提高电网安全稳定运行水平,增强电网薄弱区域供电保障能力、延缓和替代输变电设施投资 | 电化学、机械储能和电磁储能等 |
用户侧 | 工业园区、公路服务区等终端用户,农村用户,对供电可靠性、电能质量要求高的电力用户等 | 支撑分布式供能系统建设,提供定制化用能服务,提升用户灵活调节能力 | 电化学储能、电磁储能及相变储能等 |
1 | MICHAEL G. Transmission makes the power system resilient to extreme weather[R]. American Council of Renewable Energy, 2021. |
2 | 别朝红, 林超凡, 李更丰, 等. 能源转型下弹性电力系统的发展与展望[J]. 中国电机工程学报, 2020, 40(9): 2735-2745. |
BIE Z H, LIN C F, LI G F, et al. Development and prospect of resilient power system in the context of energy transition[J]. Proceedings of the CSEE, 2020, 40(9): 2735-2745. | |
3 | VUGRIN E, CASTILLO A R, SILVA-MONROY C A. Resilience metrics for the electric power system: A performance-based approach[R]. Sandia National Lab.(SNL-NM), Albuquerque, NM (United States), 2017: doi: 10.2172/1367499. |
4 | MCLAREN J A, MULLENDORE S, LAWS N D, et al. Valuing the resilience provided by solar and battery energy storage systems[R/OL]. National Renewable Energy Lab(NREL). 2018[2022-01-02]. https://www.caba.org/wp-content/uploads/2020/04/IS-2018-270.pdf. |
5 | 阳光工匠光伏网. 2021年19省储能调峰、调频政策与费用一览[EB/OL]. [2021-01-26]. http://www.21spv.com/news/show.php?itemid=80454. |
Solar artisan photovoltaic network. List of energy storage peak shaving and frequency modulation policies and expenses in 19provinces in 2021[EB/OL]. [2021-01-26]. http://www.21spv.com/news/show.php?itemid=80454. | |
6 | GAUNTLETT D, ELLER A. Energy storage trends and opportunities in emerging markets[R/OL]. Energy Sector Management Assistance Program (ESMAP) & International Finance Corporation (IFC). 2017[2022-01-02]. https://www.esmap.org/node/57868. |
7 | 胡娟, 杨水丽, 侯朝勇, 等. 规模化储能技术典型示范应用的现状分析与启示[J]. 电网技术, 2015, 39(4): 879-885. |
HU J, YANG S L, HOU C Y, et al. Present condition analysis on typical demonstration application of large-scale energy storage technology and its enlightenment[J]. Power System Technology, 2015, 39(4): 879-885. | |
8 | BOMPARD E, PONS E, WU D. Analysis of the structural vulnerability of the interconnected power grid of continental Europe with the Integrated Power System and Unified Power System based on extended topological approach[J]. International Transactions on Electrical Energy Systems, 2013, 23(5): 620-637. |
9 | 别朝红, 林雁翎, 邱爱慈. 弹性电网及其恢复力的基本概念与研究展望[J]. 电力系统自动化, 2015, 39(22): 1-9. |
BIE Z H, LIN Y L, QIU A C. Concept and research prospects of power system resilience[J]. Automation of Electric Power Systems, 2015, 39(22): 1-9. | |
10 | LI G F, ZHANG P, LUH P B, et al. Risk analysis for distribution systems in the northeast U.S. under wind storms[J]. IEEE Transactions on Power Systems, 2014, 29(2): 889-898. |
11 | MIN O Y, DUEÑAS-OSORIO L. Multi-dimensional hurricane resilience assessment of electric power systems[J]. Structural Safety, 2014, 48: 15-24. |
12 | HUANG G, WANG J H, CHEN C, et al. Integration of preventive and emergency responses for power grid resilience enhancement[J]. IEEE Transactions on Power Systems, 2017, 32(6): 4451-4463. |
13 | KAHAN J H, ALLEN A C, GEORGE J K. An operational framework for resilience[J]. Journal of Homeland Security and Emergency Management, 2009, 6(1): 1-29. |
14 | MIN O Y, DUEÑAS-OSORIO L, XING M. A three-stage resilience analysis framework for urban infrastructure systems[J]. Structural Safety, 2012, 36/37: 23-31. |
15 | FRIEDBERG I, MCLAUGHLIN K, SMITH P, et al. Towards a resilience metric framework for cyber-physical systems[C]//Proceedings of the 4th International Symposium for ICS & SCADA Cyber Security Research 2016. New York: ACM, 2016: 1-4. |
16 | CLARK A, ZONOUZ S. Cyber-physical resilience: Definition and assessment metric[J]. IEEE Transactions on Smart Grid, 2019, 10(2): 1671-1684. |
17 | OTHMAN A M, GABBAR H A. Design of resilient energy storage platform for power grid substation[C]//2018 IEEE International Conference on Smart Energy Grid Engineering (SEGE). August 12-15, 2018, Oshawa, ON, Canada. IEEE, 2018: 226-229. |
18 | TAN Y S, DAS A K, ARABSHAHI P, et al. Distribution systems hardening against natural disasters[J]. IEEE Transactions on Power Systems, 2018, 33(6): 6849-6860. |
19 | 尹积军, 夏清. 能源互联网形态下多元融合高弹性电网的概念设计与探索[J]. 中国电机工程学报, 2021, 41(2): 486-497. |
YIN J J, XIA Q. Conceptual design and exploration of multi-factor integrated high-elastic power grid in energy Internet[J]. Proceedings of the CSEE, 2021, 41(2): 486-497. | |
20 | BIE Z H, LIN Y L, LI G F, et al. Battling the extreme: A study on the power system resilience[J]. Proceedings of the IEEE, 2017, 105(7): 1253-1266. |
21 | JUAN T. Resilient distribution systems portfolio overview[R/OL]. National Renewable Energy Laboratory DOE GMI Peer Review.2018[2022-01-07]. https://www.energy.gov/sites/default/files/2018/09/f55/resilient_distribution_systems_overview_project_presentations.pdf. |
22 | TON D T, WANG W T P. A more resilient grid: The U.S. department of energy joins with stakeholders in an R&D plan[J]. IEEE Power and Energy Magazine, 2015, 13(3): 26-34. |
23 | YAO S H, WANG P, ZHAO T Y. Transportable energy storage for more resilient distribution systems with multiple microgrids[J]. IEEE Transactions on Smart Grid, 2019, 10(3): 3331-3341. |
24 | LIN Y L, BIE Z H. Tri-level optimal hardening plan for a resilient distribution system considering reconfiguration and DG islanding[J]. Applied Energy, 2018, 210: 1266-1279. |
25 | MA S S, CHEN B K, WANG Z Y. Resilience enhancement strategy for distribution systems under extreme weather events[J]. IEEE Transactions on Smart Grid, 2018, 9(2): 1442-1451. |
26 | DAVARIKIA H, BARATI M. A tri-level programming model for attack-resilient control of power grids[J]. Journal of Modern Power Systems and Clean Energy, 2018, 6(5): 918-929. |
27 | 赵曰浩, 李知艺, 鞠平, 等. 低碳化转型下综合能源电力系统弹性:综述与展望[J]. 电力自动化设备, 2021, 41(9): 13-23, 47. |
ZHAO Y H, LI Z Y, JU P, et al. Resilience of power system with integrated energy in context of low-carbon energy transition: Review and prospects[J]. Electric Power Automation Equipment, 2021, 41(9): 13-23, 47. | |
28 | 周兵凯, 杨晓峰, 李继成, 等. 多元融合高弹性电网关键技术综述[J]. 浙江电力, 2020, 39(12): 35-43. |
ZHOU B K, YANG X F, LI J C, et al. Review on key technologies of multi-integration highly-resilient power grid[J]. Zhejiang Electric Power, 2020, 39(12): 35-43. | |
29 | PANTELI M, MANCARELLA P. The grid: Stronger, bigger, smarter? : Presenting a conceptual framework of power system resilience[J]. IEEE Power and Energy Magazine, 2015, 13(3): 58-66. |
30 | 国家发展改革委,国家能源局. 国家发展改革委 国家能源局关于加快推动新型储能发展的指导意见[N/OL]. 北京:发展改革委员会.[2021-7-15]. http://www.gov.cn/zhengce/zhengceku/2021-07/24/content_5627088.htm. |
National Development and Reform Commission, National Energy Administration. Guiding opinions of the national energy administration on accelerating the development of new energy storage[N/OL]. Beijing: National Development and Reform Commission. [2021-7-15]. http://www.gov.cn/zhengce/zhengceku/2021-07/24/content_5627088.htm. | |
31 | 张智刚, 康重庆. 碳中和目标下构建新型电力系统的挑战与展望[J]. 中国电机工程学报, 2022, 42(8): 2806-2819. |
ZHANG Z G, KANG C Q. Challenges and prospects for constructing the new-type power system towards a carbon neutrality future[J]. Proceedings of the CSEE, 2022, 42(8): 2806-2819. | |
32 | 黎博, 陈民轴, 钟海旺, 等. 高比例可再生能源新型电力系统长期规划综述[J/OL].中国电机工程学报.[2022-03-30].https://doi.org/10.13334/j.0258-8013.pcsee.212716. |
LI B, CHEN M Y, ZHONG H W, et al. A review of long-term planning of new power systems with large share of renewable energy[J/OL]. Proceeding of the CSEE.[2022-03-30]. https://doi.org/10.13334/j.0258-8013.pcsee.212716. | |
33 | 国家发展改革委, 国家能源局.“十四五”新型储能发展实施方案[R/OL]. [2022-01-29]. http://www.gov.cn/zhengce/zhengceku/2022-03/22/content_5680417.htm. |
34 | 谢小荣, 马宁嘉, 刘威, 等. 新型电力系统中储能应用功能的综述与展望[J/OL]. 中国电机工程学报.[2022-04-26]. https://doi.org/10.13334/j.0258-8013.pcsee.220025. |
XIE X R, MA N G, LIU W, et al. Functions of energy storage in renewable energy dominated power systems: review and prospect[J/OL]. Proceeding of the CSEE.[2022-04-26]. https://doi.org/10.13334/j.0258-8013.pcsee.220025. | |
35 | 中国化学与物理电源行业协会储能应用分会. 储能工程动态[EB/OL]. [2021-01-01]. http://www.escn.com.cn/news/255.html. |
Energy Storage Application Branch of China Industrial Association of Power Sources. Energy storage engineering dynamics[EB/OL]. [2021-01-01]. http://www.escn.com.cn/news/255.html. | |
36 | 中国化学与物理电源行业协会储能应用分会. 2021储能产业应用研究报告[R]. 北京: 中国化学与物理电源行业协会, 2021. |
Energy Storage Application Branch of China Industrial Association of Power Sources. 2021 Energy storage industry application research report[R]. China Industrial Association of Power Sources, 2021. | |
37 | 中国储能网新闻中心. 2021年20省市明确光伏风电配储能详细要求[R/OL].北极星储能网.[2021-11-17]. http://de.escn.com.cn/news/show-1291106.html. |
News center of China energy storage network. 20 provinces and cities will clarify the detailed requirements for photovoltaic wind power distribution and storage in 2021[R/OL]. Polaris energy storage network.[2021-11-17].http://de.escn.com.cn/news/show-1291106.html. | |
38 | 张天庆. 多点布局储能系统聚合效应研究[D]. 乌鲁木齐: 新疆大学, 2019. |
ZHANG T Q. Research on aggregation effect of multi-point layout energy storage system[D]. Urumqi: Xinjiang University, 2019. | |
39 | 孙偲, 陈来军, 邱欣杰, 等. 基于合作博弈的发电侧共享储能规划模型[J]. 全球能源互联网, 2019, 2(4): 360-366. |
SUN C, CHEN L J, QIU X J, et al. A generation-side shared energy storage planning model based on cooperative game[J]. Journal of Global Energy Interconnection, 2019, 2(4): 360-366. | |
40 | 丁倩, 曾平良, 孙轶恺, 等. 一种考虑可再生能源不确定性的分布式储能电站选址定容规划方法[J]. 储能科学与技术, 2020, 9(1): 162-169. |
DING Q, ZENG P L, SUN Y K, et al. A planning method for the placement and sizing of distributed energy storage system considering the uncertainty of renewable energy sources[J]. Energy Storage Science and Technology, 2020, 9(1): 162-169. | |
41 | 邓诗语, 刘文霞, 刘畅, 等. 考虑双重不确定及综合效能的配电网储能规划决策方法[J]. 储能科学与技术, 2022, 11(1): 164-175. |
DENG S Y, LIU W X, LIU C, et al. Decision method of distribution network energy storage planning considering double uncertainty and comprehensive efficiency[J]. Energy Storage Science and Technology, 2022, 11(1): 164-175. | |
42 | 郭斌, 邢洁, 姚飞, 等. 基于双层规划模型的用户侧混合储能优化配置[J]. 储能科学与技术, 2022, 11(2): 615-622. |
GUO B, XING J, YAO F, et al. Optimal configuration of user-side hybrid energy storage based on bi-level programming model[J]. Energy Storage Science and Technology, 2022, 11(2): 615-622. | |
43 | 杨德胜, 范叶平, 李玉, 等. 基于泛在电力物联网的储能云网平台应用研究[J]. 电力信息与通信技术, 2019, 17(11): 25-31. |
YANG D S, FAN Y P, LI Y, et al. Research and application of energy storage cloud network platform based on ubiquitous power Internet of Things[J]. Electric Power Information and Communication Technology, 2019, 17(11): 25-31. | |
44 | 邹伦森, 彭鹏, 刘邦金. 基于调峰调频的电池储能云平台应用与研究[J]. 蓄电池, 2021, 58(1): 10-14. |
ZOU L S, PENG P, LIU B J. Application and research of battery energy storage cloud platform based on peak modulation and frequency modulation[J]. Chinese LABAT Man, 2021, 58(1): 10-14. | |
45 | 陈兵, 张琦兵, 王昊炜, 等. 规模化电网侧储能电站监控系统应用及思考[J]. 电工技术, 2019(9): 115-118. |
CHEN B, ZHANG Q B, WANG H W, et al. Application and thinking of large-scale monitoring system for grid side energy storage power station[J]. Electric Engineering, 2019(9): 115-118. | |
46 | 李琳, 秦泽宇, 刘啸. 电网侧储能电站监控信息接入验收管控方法研究[J]. 电气技术, 2021, 22(7): 7-12, 18. |
LI L, QIN Z Y, LIU X. Monitoring information access management of grid-side battery energy storage power station[J]. Electrical Engineering, 2021, 22(7): 7-12, 18. | |
47 | 栗峰, 郝雨辰, 周昶, 等. 电网侧电化学储能调度运行及其关键技术[J]. 供用电, 2020, 37(6): 82-90. |
LI F, HAO Y C, ZHOU C, et al. Dispatching operation and key technologies analysis of electrochemical energy storage on grid side[J]. Distribution & Utilization, 2020, 37(6): 82-90. | |
48 | 尹渠凯. 规模化分布式储能聚合建模及其协同优化调控策略研究[D]. 北京: 华北电力大学, 2019. |
YIN Q K. Scale distributed energy storage aggregation modeling and cooperative optimized regulation strategy[D]. Beijing: North China Electric Power University, 2019. | |
49 | 林俊豪, 古雄文, 马丽. 基于优化调度的用户侧电池储能配置及控制方法[J]. 储能科学与技术, 2018, 7(1): 90-99. |
LIN J H, GU X W, MA L. Optimal sizing and control of demand-side battery energy storage system[J]. Energy Storage Science and Technology, 2018, 7(1): 90-99. | |
50 | 安琪. 中国储能市场机制与监管现状、问题与建议[J]. 中国能源, 2017, 39(12): 23-27. |
AN Q. Market mechanisms and the present situation, problems and suggestions on the regulatory barriers of energy storage in China[J]. Energy of China, 2017, 39(12): 23-27. | |
51 | 陈启鑫, 房曦晨, 郭鸿业, 等. 储能参与电力市场机制:现状与展望[J]. 电力系统自动化, 2021, 45(16): 14-28. |
CHEN Q X, FANG X C, GUO H Y, et al. Participation mechanism of energy storage in electricity market: Status quo and prospect[J]. Automation of Electric Power Systems, 2021, 45(16): 14-28. | |
52 | 肖云鹏, 张兰, 张轩, 等. 包含独立储能的现货电能量与调频辅助服务市场出清协调机制[J]. 中国电机工程学报, 2020, 40(S1): 167-180. |
XIAO Y P, ZHANG L, ZHANG X, et al. The coordinated market clearing mechanism for spot electric energy and regulating ancillary service incorporating independent energy storage resources[J]. Proceedings of the CSEE, 2020, 40(S1): 167-180. | |
53 | 林博. 储能技术在电力系统中的应用价值和运营模式[J]. 储能科学与技术, 2021, 10(5): 1873. |
LIN B. Application value and operation mode of energy storage technology in power system[J]. Energy Storage Science and Technology, 2021, 10(5): 1873. | |
54 | 程鑫, 龚贤夫, 张哲, 等. 电化学储能在保底变电站中的配置方案与控制策略[J]. 电力自动化设备, 2022, 42(1): 86-92. |
CHENG X, GONG X F, ZHANG Z, et al. Configuration scheme and control strategy of electrochemical energy storage in security power substation[J]. Electric Power Automation Equipment, 2022, 42(1): 86-92. | |
55 | 李万智, 白小奇, 施念, 等. 考虑储能可靠性的高海拔地区变电站站用储能配置研究[J]. 能源与环保, 2020, 42(12): 130-136. |
LI W Z, BAI X Q, SHI N, et al. Study on station-used energy storage configuration for substation in high altitude area considering energy storage reliability[J]. China Energy and Environmental Protection, 2020, 42(12): 130-136. | |
56 | 邢东峰, 田铭兴. 虚拟同步发电机频率特性与储能设备容量及充放电特性的关系[J]. 电网技术, 2021, 45(9): 3582-3593. |
XING D F, TIAN M X. Relationship between frequency characteristics of virtual synchronous generator and parameters of energy storage equipment[J]. Power System Technology, 2021, 45(9): 3582-3593. | |
57 | 龚光军, 杨军, 彭晓涛, 等. 超导储能装置对输电线路纵联电流差动保护的影响分析[J]. 电力系统自动化, 2011, 35(7): 38-41, 107. |
GONG G J, YANG J, PENG X T, et al. Effects of superconductor magnetic energy storage device on pilot current differential protection[J]. Automation of Electric Power Systems, 2011, 35(7): 38-41, 107. | |
58 | 黄金鑫, 李华强, 陆杨. 基于蒙特卡洛模拟和频谱分析法的孤岛微电网储能容量配置[J]. 电网技术, 2020, 44(5): 1622-1629. |
HUANG J X, LI H Q, LU Y. Energy storage capacity configuration of isolated microgrid based on Monte Carlo simulation and spectrum analysis[J]. Power System Technology, 2020, 44(5): 1622-1629. | |
59 | 李瑜, 张占强, 孟克其劳, 等. 基于分层控制的孤岛微电网储能优化控制策略[J]. 储能科学与技术, 2022, 11(1): 176-184. |
LI Y, ZHANG Z Q, MENG K, et al. Optimal control strategy for energy storage in island microgrid based on hierarchical control[J]. Energy Storage Science and Technology, 2022, 11(1): 176-184. | |
60 | 王锦. 孤岛运行微电网中电池储能系统削峰填谷优化控制策略研究[D]. 武汉: 湖北工业大学, 2021. |
WANG J. Research on optimal control strategy of battery energy storage system in island operating microgrid[D]. Wuhan: Hubei University of Technology, 2021. | |
61 | 陈海涛, 雷才嘉, 葛馨远, 等. 孤岛运行下新能源接入的多储能协同控制研究[J]. 新型工业化, 2019, 9(7): 23-27. |
CHEN H T, LEI C J, GE X Y, et al. Research the multi-energy storage collaborative control of new energy access distribution network in island operation[J]. The Journal of New Industrialization, 2019, 9(7): 23-27. | |
62 | 蔡伟君. 电力系统新增黑启动机组优化布点研究[J]. 电工技术, 2021(14): 94-95. |
CAI W J. Study on optimal distribution of new black starter units in power system[J]. Electric Engineering, 2021(14): 94-95. | |
63 | 刘力卿, 杜平, 万玉良, 等. 储能型风电场作为局域电网黑启动电源的可行性探讨[J]. 电力系统自动化, 2016, 40(21): 210-216. |
LIU L Q, DU P, WAN Y L, et al. Feasibility discussion on using storage-based wind farm as black-start power source in local power grid[J]. Automation of Electric Power Systems, 2016, 40(21): 210-216. | |
64 | 万更新. 多储能电站黑启动系统构架关键技术的设计与应用[J]. 仪器仪表用户, 2022, 29(2): 91-94. |
WAN G X. Design and application of key technologies for black start scheme of multi energy storage power station[J]. Instrumentation, 2022, 29(2): 91-94. | |
65 | 李旭, 罗嘉, 丁勇, 等. 辅助重型燃气轮机黑启动的大容量储能系统控制技术及其应用[J]. 中国电机工程学报, 2022, 42(3): 1069-1080. |
LI X, LUO J, DING Y, et al. Control technology and application of large-scale energy storage system assisting black start of heavy duty gas turbine[J]. Proceedings of the CSEE, 2022, 42(3): 1069-1080. | |
66 | 王剑波, 李建林, 周喜超, 等. 基于全景理论的分散式储能系统集群优化调度策略[J]. 高电压技术, 2021,47(8): 2742-2750 |
WANG J B, LI J L, ZHOU X C, et al. Optimal scheduling strategy of decentralized energy storage system based on panoramic theory[J]. High Voltage Engineering, 2021,47(8): 2742-2750 | |
67 | 周校聿, 刘娆, 鲍福增, 等. 百兆瓦级储能参与电网双重辅助服务调度的联合优化模型[J]. 电力系统自动化, 2021, 45(19): 60-69. |
ZHOU X Y, LIU R, BAO F Z, et al. Joint optimization model for hundred-megawatt-level energy storage participating in dual ancillary services dispatch of power grid[J]. Automation of Electric Power Systems, 2021, 45(19): 60-69. |
[1] | 袁性忠, 胡斌, 郭凡, 严欢, 贾宏刚, 苏舟. 欧盟储能政策和市场规则及对我国的启示[J]. 储能科学与技术, 2022, 11(7): 2344-2353. |
[2] | 刘国静, 李冰洁, 胡晓燕, 岳芬, 徐际强. 澳大利亚储能相关政策与电力市场机制及对我国的启示[J]. 储能科学与技术, 2022, 11(7): 2332-2343. |
[3] | 时智勇, 王彩霞, 胡静. 独立新型储能电站价格形成机制及成本疏导优化方法[J]. 储能科学与技术, 2022, 11(12): 4067-4076. |
[4] | 朱寰, 徐健翔, 刘国静, 岳芬, 俞振华, 张兴. 英国储能相关政策机制与商业模式及对我国的启示[J]. 储能科学与技术, 2022, 11(1): 370-378. |
[5] | 刘英军, 刘亚奇, 张华良, 徐玉杰, 陈海生. 我国储能政策分析与建议[J]. 储能科学与技术, 2021, 10(4): 1463-1473. |
[6] | 张鸿宇, 王宇. 国外电网侧储能电站参与调频辅助服务市场的机制经验及对我国的启示[J]. 储能科学与技术, 2021, 10(2): 766-773. |
[7] | 宋安琪, 武利会, 刘成, 岳芬, 李恒真, 邱太洪, 徐际强. 分布式储能发展的国际政策与市场规则分析[J]. 储能科学与技术, 2020, 9(1): 306-316. |
[8] | 林立乾, 米增强, 贾雨龙, 范辉, 杜鹏. 面向电力市场的分布式储能聚合参与电网调峰[J]. 储能科学与技术, 2019, 8(2): 276-283. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||