储能科学与技术 ›› 2024, Vol. 13 ›› Issue (3): 759-769.doi: 10.19799/j.cnki.2095-4239.2023.0809
武美玲1,2(), 牛磊1,2(), 李世友1,2, 赵冬妮1,2
收稿日期:
2023-11-10
修回日期:
2023-12-05
出版日期:
2024-03-28
发布日期:
2024-03-28
通讯作者:
牛磊
E-mail:2977694112@qq.com;niulei@lut.deu.cn
作者简介:
武美玲(2000—),女,硕士研究生,主要研究方向为电化学储能技术,E-mail:2977694112@qq.com;
基金资助:
Meiling WU1,2(), Lei NIU1,2(), Shiyou LI1,2, Dongni ZHAO1,2
Received:
2023-11-10
Revised:
2023-12-05
Online:
2024-03-28
Published:
2024-03-28
Contact:
Lei NIU
E-mail:2977694112@qq.com;niulei@lut.deu.cn
摘要:
锂离子电池因其能量密度高和循环寿命长等优点,在电子产品和电动汽车等领域被广泛应用。然而,锂离子电池首次充放电过程中负极表面固态电解质界面(SEI)膜的形成会永久地消耗正极材料中的活性锂,造成不可逆的容量损失,进而降低电池首次库仑效率。已有的研究表明,预锂化技术可使电池首次库仑效率得到有效提高。在众多预锂化技术中,正极添加剂预锂化具有工艺简单、价格低廉和安全性高等优点,因此具有较为广阔的应用前景。鉴于此,本综述介绍了三类正极预锂化添加剂:三元富锂化合物、二元锂化合物和基于逆转化反应的纳米复合材料的基本工作原理和限制其发展的关键科学问题,着重归纳了近年来在预锂化添加剂材料性能优化,储能机理研究方面的研究进展和亟待解决的问题,指出了补锂添加剂在补偿首次容量损失方面的重要性,并对该方法的发展进行了展望。本文在总结当前研究进展的基础上,对正极预锂化添加剂未来的研究思路和发展方向进行了展望,提出了进一步研究预锂化添加剂的合成条件和改性策略,在不以容量牺牲为代价的前提下提升补锂添加剂的环境稳定性或开发一种新型的电解液添加剂,解决预锂化添加剂首次循环时残留物或产气对电池长循环性能的影响。这些策略有望进一步推动力离子电池的发展。
中图分类号:
武美玲, 牛磊, 李世友, 赵冬妮. 正极预锂化添加剂用于锂离子电池的研究进展[J]. 储能科学与技术, 2024, 13(3): 759-769.
Meiling WU, Lei NIU, Shiyou LI, Dongni ZHAO. Research progress on cathode prelithium additives used in lithium-ion batteries[J]. Energy Storage Science and Technology, 2024, 13(3): 759-769.
表1
三元富锂化合物应用于不同正极材料的性能总结"
Additive | Additive amount (质量分数) | Cathode | Full cell reversible capacity | Reversible capacity improvement after adding the additive | Capacity retention |
---|---|---|---|---|---|
Li2NiO2 | 4% | LiCoO2 | — | 8% | 87% after 250 cycles |
Li6CoO4 | 15% | LiCoO2 | 133 mAh/g | 73% | 约57% after 50 cycles |
Li5FeO4 | 7% | LiCoO2 | 144 mAh/gLCO-LFO 156 mAh/gLCO | 14% 24% | 95% after 50 cycles |
Li5FeO4 | 10% | LiNi0.5Co0.2Mn0.3O2 | 140.8 mAh/gLCM-LFO 154.9 mAh/gLCM | 11% 22% | 98.93% after 50 cycles |
Li8ZrO6 | 5% | LiNi0.5Mn1.5O4 | (107±3) mAh/gLNMO-LZO (112±3) mAh/gLNMO | 10% 15% | 87% after 50 cycles |
表2
二元锂化合物应用于不同正极材料的性能总结"
Additive | Additive amount | Cathode | Chargeing platform voltage | Theroetical capacity | Capacity improvement after adding the additive |
---|---|---|---|---|---|
Li2O | 20% | NCM | 4.5 V | 1000 mAh/g | 44% |
Li2O2 | 2% | NCM | 4.3 V | 1100 mAh/g | 20.5% |
Li3N | 2% | LiCoO2 | 0.9 V | 1400 mAh/g | 19% |
LiN3 | — | LiMn2O4 | 4.0 V | 567 mAh/g | — |
LiSe | 6% | LiFePO4 | 3.5~4.4 V | 559 mAh/g | 9% |
Li3P | 2.5% | LiFePO4 | 2.7 V | 1547 mAh/g | 10.2% |
表3
基于逆转化反应的纳米复合材料应用于不同正极材料的性能总结"
Additive | Additive amount | Cathode | Chargeing platform voltage | Theroetical capacity | Capacity improvement after adding the additive |
---|---|---|---|---|---|
Li2O/Co | 4.8% | LiFePO4 | — | 724 mAh/g | 12% |
Li2O/Fe | 7.5% | LiFePO4 | — | 799 mAh/g | 9.1% |
LiF/Co | 4.8% | LiFePO4 | 3.2~4.2 V | 520 mAh/g | 20% |
Li2S/Co | 4.8% | LiFePO4 | 2.0 V | 670 mAh/g | 5.6% |
Fe/LiF/Li2O | 4.8% | NCM | 3.1/3.8~4.5 V | 550 mAh/g | 15% |
1 | DING R Q, TIAN S Y, ZHANG K C, et al. Recent advances in cathode prelithiation additives and their use in lithium-ion batteries[J]. Journal of Electroanalytical Chemistry, 2021, 893: 115325. |
2 | 朱亮, 严长青, 倪涛来. 锂离子电池预锂化技术的研究现状[J]. 电池, 2018, 48(3): 206-209. |
ZHU L, YAN C Q, NI T L. Research status quo of prelithiation technology for Li-ion battery[J]. Battery Bimonthly, 2018, 48(3): 206-209. | |
3 | 田孟羽, 詹元杰, 闫勇, 等. 锂离子电池补锂技术[J]. 储能科学与技术, 2021, 10(3): 800-812. |
TIAN M Y, ZHAN Y J, YAN Y, et al. Replenishment technology of the lithium ion battery[J]. Energy Storage Science and Technology, 2021, 10(3): 800-812. | |
4 | ZHAN Y J, YU H L, BEN L B, et al. Application of Li2S to compensate for loss of active lithium in a Si–C anode[J]. Journal of Materials Chemistry A, 2018, 6(15): 6206-6211. |
5 | LIU X M, WU Z, XIE L Q, et al. Prelithiation enhances cycling life of lithium-ion batteries: A mini review[J]. Energy \& Environmental Materials, 2023, 6(6): e12501. |
6 | 黄晓伟, 李少鹏, 张校刚. 负极补锂锂化裕度对电芯性能的影响及机理研究[J]. 储能科学与技术, 2023, 12(9): 2727-2734. |
HUANG X W, LI S P, ZHANG X G. Research on the impact and mechanism of the lithium replenishment degree of anode prelithiation on the performance of lithium-ion batteries[J]. Energy Storage Science and Technology, 2023, 12(9): 2727-2734. | |
7 | 赵鹤, 韩策, 程小露, 等. 采用阳极预锂化技术的锂离子电池高倍率老化容量衰减机理研究[J]. 储能科学与技术, 2021, 10(2): 454-461. |
ZHAO H, HAN C, CHENG X L, et al. Research on the capacity fading mechanism of high rate aged lithium-ion batteries with anode prelithiation treatment[J]. Energy Storage Science and Technology, 2021, 10(2): 454-461. | |
8 | WANG F, WANG B, LI J X, et al. Prelithiation: A crucial strategy for boosting the practical application of next-generation lithium ion battery[J]. ACS Nano, 2021, 15(2): 2197-2218. |
9 | GABRIELLI G, MARINARO M, MANCINI M, et al. A new approach for compensating the irreversible capacity loss of high-energy Si/C|LiNi0.5Mn1.5O4 lithium-ion batteries[J]. Journal of Power Sources, 2017, 351: 35-44. |
10 | SONG Z H, FENG K, ZHANG H Z, et al. "Giving comes before receiving": High performance wide temperature range Li-ion battery with Li5V2(PO4)3 as both cathode material and extra Li donor[J]. Nano Energy, 2019, 66: 104175. |
11 | LIU G, ZHAO H, WANG Z H. Silicon oxide (SiO) anode enabled by a conductive polymer binder and performance enhancement by stabilized lithium metal power (SLMP): US20150364755[P]. 2015-12-17. |
12 | 余晨露, 田晓华, 张哲娟, 等. 锂离子电池硅基负极比容量提升的研究进展[J]. 储能科学与技术, 2020, 9(6): 1614-1628. |
YU C L, TIAN X H, ZHANG Z J, et al. Research progress of specific capacity improvements of silicon-based anodes in lithium-ion batteries[J]. Energy Storage Science and Technology, 2020, 9(6): 1614-1628. | |
13 | CAO M Y, LIU Z P, ZHANG X, et al. Feasibility of prelithiation in LiFePO4[J]. Advanced Functional Materials, 2023, 33(9): 2210032. |
14 | 詹元杰. 正极补锂材料及其在锂离子电池中的应用[D]. 北京: 中国科学院大学(中国科学院物理研究所), 2018. |
ZHAN Y J. Adding sacrificial lithium compounds to cathode for compensation the first cycle capacity loss of Li-ion batteries[D]. Beijing: University of Chinese Academy of Sciences,2018. | |
15 | HUANG Z Y, DENG Z, ZHONG Y, et al. Progress and challenges of prelithiation technology for lithium-ion battery[J]. Carbon Energy, 2022, 4(6): 1107-1132. |
16 | MIN X Q, XU G J, XIE B, et al. Challenges of prelithiation strategies for next generation high energy lithium-ion batteries[J]. Energy Storage Materials, 2022, 47: 297-318. |
17 | 李子晨. 锂离子电池正极补锂添加剂的制备及其性能研究[D]. 哈尔滨: 哈尔滨工业大学, 2020. |
LI Z C. Preparation and performance study of cathode prelithiation additive in lithium ion batteries[D].Harbin: Harbin Institute of Technology, 2020. | |
18 | HAN C G, ZHU C Y, SAITO G, et al. Enhanced cycling performance of surface-doped LiMn2O4 modified by a Li2CuO2-Li2NiO2 solid solution for rechargeable lithium-ion batteries[J]. Electrochimica Acta, 2017, 224: 71-79. |
19 | PARK H, YOON T, KIM Y U, et al. Li2NiO2 as a sacrificing positive additive for lithium-ion batteries[J]. Electrochimica Acta, 2013, 108: 591-595. |
20 | KIM M G, CHO J. Air stable Al2O3-coated Li2NiO2 cathode additive as a surplus current consumer in a Li-ion cell[J]. Journal of Materials Chemistry, 2008, 18(48): 5880-5887. |
21 | 曾林勇. 富锂化合物正极补锂添加剂的制备及电化学性能的研究[D]. 广州: 广东工业大学, 2022. |
ZENG L Y. Study on preparation and electrochemical performance of lithium-rich compound as positive electrode lithium supplement additive[D].Guangzhou: Guangdong University of Technology, 2022. | |
22 | SU X, LIN C K, WANG X P, et al. A new strategy to mitigate the initial capacity loss of lithium ion batteries[J]. Journal of Power Sources, 2016, 324: 150-157. |
23 | LI J, ZHU B, LI S H, et al. Air-stable Li6CoO4@Li5FeO4 pre-lithiation reagent in cathode enabling high performance lithium-ion batteries[J]. Journal of the Electrochemical Society, 2021, 168(8): 080510. |
24 | ZHANG L H, DOSE W M, VU A D, et al. Mitigating the initial capacity loss and improving the cycling stability of silicon monoxide using Li5FeO4[J]. Journal of Power Sources, 2018, 400: 549-555. |
25 | PARK K S, IM D, BENAYAD A, et al. LiFeO2-incorporated Li2MoO3 as a cathode additive for lithium-ion battery safety[J]. Chemistry of Materials, 2012, 24(14): 2673-2683. |
26 | NOH M, CHO J. Role of Li6CoO4 cathode additive in Li-ion cells containing low coulombic efficiency anode material[J]. Journal of the Electrochemical Society, 2012, 159(8): A1329-A1334. |
27 | KIM M, SPINDLER B D, DONG L F, et al. Li8ZrO6 as a pre-lithiation additive for lithium-ion batteries[J]. ACS Applied Energy Materials, 2022, 5(11): 14433-14444. |
28 | DIAZ-LOPEZ M, CHATER P A, BORDET P, et al. Li2O: Li–Mn–O disordered rock-salt nanocomposites as cathode prelithiation additives for high-energy density Li-ion batteries[J]. Advanced Energy Materials, 2020, 10(7): 1902788. |
29 | ABOUIMRANE A, CUI Y J, CHEN Z H, et al. Enabling high energy density Li-ion batteries through Li2O activation[J]. Nano Energy, 2016, 27: 196-201. |
30 | QIAO Y, YANG H J, CHANG Z, et al. A high-energy-density and long-life initial-anode-free lithium battery enabled by a Li2O sacrificial agent[J]. Nature Energy, 2021, 6: 653-662. |
31 | PARK K, YU B C, GOODENOUGH J B. Li3N as a cathode additive for high-energy-density lithium-ion batteries[J]. Advanced Energy Materials, 2016, 6(10): 1502534. |
32 | SUN Y M, LI Y B, SUN J, et al. Stabilized Li3N for efficient battery cathode prelithiation[J]. Energy Storage Materials, 2017, 6: 119-124. |
33 | SHANMUKARAJ D, GRUGEON S, LARUELLE S, et al. Sacrificial salts: Compensating the initial charge irreversibility in lithium batteries[J]. Electrochemistry Communications, 2010, 12(10): 1344-1347. |
34 | FU Y P, XIE Y, ZENG L Y, et al. Li2Se as cathode additive to prolong the next generation high energy lithium-ion batteries[J]. Surfaces and Interfaces, 2023, 36: 102610. |
35 | PAN Y, QI X, DU H, et al. Li2Se as a cathode prelithiation additive for lithium-ion batteries[J]. ACS Applied Materials & Interfaces, 2023, 15(15): 18763-18770. |
36 | WANG X Y, LIU C, ZHANG S J, et al. Dual-functional cathodic prelithiation reagent of Li3P in lithium-ion battery for compensating initial capacity loss and enhancing safety[J]. ACS Applied Energy Materials, 2021, 4(5): 5246-5254. |
37 | SUN Y M, LEE H W, SEH Z W, et al. High-capacity battery cathode prelithiation to offset initial lithium loss[J]. Nature Energy, 2016, 1(1): 15008. |
38 | ZHENG L Y, YU A S, LI G, et al. High-energy-density and long-lifetime lithium-ion battery enabled by a stabilized Li2O2 cathode prelithiation additive[J]. ACS Applied Materials & Interfaces, 2022, 14(34): 38706-38716. |
39 | ZHENG J S, LIANG K, SHI K Y, et al. In situ synthesis and electrochemical properties of Fe/Li2O as a high-capacity cathode prelithiation additive for lithium ion batteries[J]. International Journal of Electrochemical Science, 2019, 14(6): 5305-5316. |
40 | SUN Y M, LEE H W, ZHENG G Y, et al. In situ chemical synthesis of lithium fluoride/metal nanocomposite for high capacity prelithiation of cathodes[J]. Nano Letters, 2016, 16(2): 1497-1501. |
41 | ZHAN Y J, YU H L, BEN L B, et al. Using Li2S to compensate for the loss of active lithium in Li-ion batteries[J]. Electrochimica Acta, 2017, 255: 212-219. |
42 | SUN Y M, LEE H W, SEH Z W, et al. Lithium sulfide/metal nanocomposite as a high-capacity cathode prelithiation material[J]. Advanced Energy Materials, 2016, 6(12): 1600154. |
43 | DU J M, WANG W Y, ENG A Y S, et al. Metal/LiF/Li2O nanocomposite for battery cathode prelithiation: Trade-off between capacity and stability[J]. Nano Letters, 2020, 20(1): 546-552. |
[1] | 申小雨, 尹丛勃. 基于卷积Fastformer的锂离子电池健康状态估计[J]. 储能科学与技术, 2024, 13(3): 990-999. |
[2] | 胡大林, 任潘利, 张昌明, 杨明阳, 卢周广. Al-Y-Zr原位共掺杂提高4.53 V钴酸锂正极材料的循环性能[J]. 储能科学与技术, 2024, 13(3): 742-748. |
[3] | 张稚国, 李华清, 王莉, 何向明. 锂离子电池塑料-金属复合集流体的特性及制备研究进展[J]. 储能科学与技术, 2024, 13(3): 749-758. |
[4] | 刘剑, 于立博, 吴振兴, 牟介刚. 基于风冷的锂离子电池充放电设备热特性影响研究[J]. 储能科学与技术, 2024, 13(3): 914-923. |
[5] | 江成凡, 黄俊, 谢海波. 提高硬碳材料钠离子电池首次库仑效率的研究进展[J]. 储能科学与技术, 2024, 13(3): 825-840. |
[6] | 孙明明. 有机无机复合锂离子电池固态电解质专利分析[J]. 储能科学与技术, 2024, 13(3): 1096-1105. |
[7] | 宋元明, 刘亚杰, 金光, 周星, 黄旭程. 锂离子电池/超级电容器混合储能系统能量管理方法综述[J]. 储能科学与技术, 2024, 13(2): 652-668. |
[8] | 李校磊, 高健, 周伟东, 李泓. COMSOL Multiphysics在锂离子电池中的应用[J]. 储能科学与技术, 2024, 13(2): 546-567. |
[9] | 彭可, 张志成, 胡有章, 张旭辉, 周稼辉, 李彬. 基于有限元的热力耦合场匣钵运动分析与优化[J]. 储能科学与技术, 2024, 13(2): 634-642. |
[10] | 雷旗开, 余胤, 彭鹏, 陈满, 金凯强, 王青松. 隔热材料布局方式对280 Ah磷酸铁锂电池热失控传播抑制效果的影响[J]. 储能科学与技术, 2024, 13(2): 495-502. |
[11] | 李珂, 郝奕帆, 方振华, 王静, 张松通, 祝夏雨, 邱景义, 明海. 高功率化学电源体系发展及军事应用分析[J]. 储能科学与技术, 2024, 13(2): 436-461. |
[12] | 段双明, 张胜利. 基于自适应多层RLS的锂离子电池参数辨识[J]. 储能科学与技术, 2024, 13(2): 712-720. |
[13] | 杜文, 王君雷, 徐运飞, 李世龙, 王昆. 火焰喷雾热解法生产锂离子电池高镍三元正极材料的技术经济分析[J]. 储能科学与技术, 2024, 13(1): 345-357. |
[14] | 梁宏毅, 陈锋, 甘友毅, 邵丹. 动力锂电池三元正极低温性能研究[J]. 储能科学与技术, 2024, 13(1): 293-298. |
[15] | 肖也, 徐磊, 闫崇, 黄佳琦. 锂电池用参比电极的设计与应用[J]. 储能科学与技术, 2024, 13(1): 82-91. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||