储能科学与技术 ›› 2024, Vol. 13 ›› Issue (5): 1427-1434.doi: 10.19799/j.cnki.2095-4239.2023.0850

• 储能材料与器件 • 上一篇    下一篇

富锂正极材料Li1.2Ni0.13Co0.13Mn0.54O2 的制备及性能

缪胤宝(), 张文华(), 刘伟昊, 王帅, 陈哲, 彭望, 曾杰   

  1. 南昌工程学院,江西 南昌 330000
  • 收稿日期:2023-11-24 修回日期:2024-01-02 出版日期:2024-05-28 发布日期:2024-05-28
  • 通讯作者: 张文华 E-mail:m229739796@163.com;2015994552@nit.edu.cn
  • 作者简介:缪胤宝(1996—),男,硕士研究生,研究方向为电网储能技术,E-mail:m229739796@163.com
  • 基金资助:
    国家自然科学基金项目(22269014);江西省教育厅项目(GJJ211913)

Preparation and performance of lithium-rich cathode material Li1.2Ni0.13Co0.13Mn0.54O2

Yinbao MIAO(), Wenhua ZHANG(), Weihao LIU, Shuai WANG, Zhe CHEN, Wang PENG, Jie ZENG   

  1. Nanchang Institute of Technology, Nanchang 330000, Jiangxi, China
  • Received:2023-11-24 Revised:2024-01-02 Online:2024-05-28 Published:2024-05-28
  • Contact: Wenhua ZHANG E-mail:m229739796@163.com;2015994552@nit.edu.cn

摘要:

为满足当前新能源发电技术对高比容量电化学储能材料的需求,采用聚合物热解法,通过优化前体聚合过程中金属离子与丙烯酸配比制备高比容量层状富锂锰基氧化物Li1.2Ni0.13Co0.13Mn0.54O2。依据丙烯酸聚合反应实现金属离子均匀分散,通过二次升温煅烧制备出富锂锰基正极材料Li1.2Ni0.13Co0.13Mn0.54O2。改变煅烧温度,制备不同煅烧温度下的正极材料样品,研究煅烧温度对其微观形貌及电化学性能的影响。利用X射线衍射(XRD)、扫描电镜(SEM)测试技术观测不同材料样品微观形貌和晶体结构的差异,利用能谱分析技术(EDS)观察材料中的元素分布情况,使用新威电池测试系统和电化学工作站对所制备正极材料的电化学性能进行研究。结果表明,在925 ℃下制备的Li1.2Ni0.13Co0.13Mn0.54O2正极材料结晶度高,层状结构明显,阳离子混排程度低,各元素分散均匀。在2.0~4.8 V范围循环充放电测试,0.1C倍率下首周放电比容量达到290.3 mAh/g,0.5C倍率下循环充放电100周放电容量保持在204.8 mAh/g,容量保持率为81.9%,具有较好的循环稳定性。本实验制备出的富锂锰基正极材料Li1.2Ni0.13Co0.13Mn0.54O2具有良好的电化学性能,有助于推动富锂锰基正极材料的应用,为高比容量正极材料的发展提供实验依据。

关键词: 锂离子电池, 富锂锰基正极材料, 聚合物热解法, 电化学性能

Abstract:

To meet the current demand for high-specific capacity electrochemical energy storage materials in new energy generation technology, we prepared high-specific capacity layered lithium-rich manganese-based oxide (Li1.2Ni0.13Co0.13Mn0.54O2) by optimizing the proportion of metal ions and acrylic acid in the precursor polymerization process using the polymer-pyrolysis method. Based on the polymerization reaction of acrylic acid to achieve uniform dispersion of metal ions, a Li1.2Ni0.13Co0.13Mn0.54O2 cathode material was prepared by secondary heating and calcination. By changing the calcination temperature to prepare cathode material samples at different calcination temperatures, we studied the effect of calcination temperature on the microstructure and electrochemical performance. We employed testing techniques such as X-ray diffraction and scanning electron microscopy to observe differences in the microstructure and crystal structures of different material samples, energy dispersive spectroscopy to observe the distribution of elements in the materials, and the Xinwei battery testing system and electrochemical workstation to study the electrochemical performance of the prepared cathode material. The results show that the Li1.2Ni0.13Co0.13Mn0.54O2 cathode material prepared at 925 ℃ has high crystallinity, obvious layered structure, low degree of cation mixing, and uniform dispersion of various elements. During the charge-discharge cycle test in the range of 2.0—4.8 V, the first cycle discharge-specific capacity reached 290.3 mAh/g at a rate of 0.1C. The discharge capacity remained at 204.8 mAh/g for 100 cycles at a rate of 0.5C, with a capacity retention rate of 81.9%, demonstrating good cycling stability. The prepared Li1.2Ni0.13Co0.13Mn0.54O2 cathode material exhibits good electrochemical performance. This study promotes the application of lithium-rich manganese-based oxide cathode materials and provides an experimental basis for developing high-specific capacity cathode materials.

Key words: lithium ion battery, lithium rich manganese based cathode material, polymer-pyrolysis method, electrochemical performance

中图分类号: