1 |
唐葆君, 李茹. 可再生能源成本下降对电力行业碳达峰与碳中和的影响[J]. 企业经济, 2021, 40(8): 53-63.
|
|
TANG B J, LI R. Impact of reduced renewable energy costs on carbon peak and carbon neutrality of power industry[J]. Enterprise Economy, 2021, 40(8): 53-63.
|
2 |
WU J J, TANG G H, WANG R, et al. Multi-objective optimization for China's power carbon emission reduction by 2035[J]. Journal of Thermal Science, 2019, 28(2): 184-194.
|
3 |
DING J, XU Y J, WANG Z Y, et al. Estimating the economics of electrical energy storage based on different policies in China[J]. Journal of Thermal Science, 2020, 29(2): 352-364.
|
4 |
刘圣春, 宋丽莹, 代宝民, 等. 附加碳税的综合能源系统优化调度分析[J]. 工程热物理学报, 2022, 43(7): 1790-1800.
|
|
LIU S C, SONG L Y, DAI B M, et al. Analysis on optimal dispatching of integrated energy system with additional carbon tax[J]. Journal of Engineering Thermophysics, 2022, 43(7): 1790-1800.
|
5 |
ERDIWANSYAH, MAHIDIN, HUSIN H, et al. A critical review of the integration of renewable energy sources with various technologies[J]. Protection and Control of Modern Power Systems, 2021, 6(1): 3.
|
6 |
张敏, 王建学, 王秀丽, 等. 面向新能源消纳的调峰辅助服务市场双边交易机制与模型[J]. 电力自动化设备, 2021, 41(1): 84-91.
|
|
ZHANG M, WANG J X, WANG X L, et al. Bilateral trading mechanism and model of peak regulation auxiliary service market for renewable energy accommodation[J]. Electric Power Automation Equipment, 2021, 41(1): 84-91.
|
7 |
TONG W X, LU Z G, CHEN W J, et al. Solid gravity energy storage: A review[J]. Journal of Energy Storage, 2022, 53: 105226.
|
8 |
陈海生, 李泓, 徐玉杰, 等. 2022年中国储能技术研究进展[J]. 储能科学与技术, 2023, 12(5): 1516-1552.
|
|
CHEN H S, LI H, XU Y J, et al. Research progress on energy storage technologies of China in 2022[J]. Energy Storage Science and Technology, 2023, 12(5): 1516-1552.
|
9 |
BERRADA A, LOUDIYI K, ZORKANI I. Dynamic modeling and design considerations for gravity energy storage[J]. Journal of Cleaner Production, 2017, 159: 336-345.
|
10 |
Gravitricity renewable energy storage[EB/OL]. [2023-12-20]. https://gravitricity.com/.
|
11 |
MORSTYN T, CHILCOTT M, MCCULLOCH M D. Gravity energy storage with suspended weights for abandoned mine shafts[J]. Applied Energy, 2019, 239: 201-206.
|
12 |
Energy vault[EB/OL]. [2023-12-20]. https://energyvault.com/.
|
13 |
HUNT J D, ZAKERI B, FALCHETTA G, et al. Mountain Gravity Energy Storage: A new solution for closing the gap between existing short- and long-term storage technologies[J]. Energy, 2020, 190: 116419.
|
14 |
Advanced rail energy storage (ARES) [EB/OL]. (2022-09-29) [2022-10-11]. https:// aresnorthamerica.com/.
|
15 |
PEITZKE W R, BROWN M B, ERDMAN W L, et al. Utility scale electric energy storage system: US8593012[P]. 2013-11-26.
|
16 |
秦婷婷, 周学志, 郭丁彰, 等. 铁轨重力储能系统效率影响因素研究[J]. 储能科学与技术, 2023, 12(3): 835-845.
|
|
QIN T T, ZHOU X Z, GUO D Z, et al. Study on factors influencing rail gravity energy storage system efficiency[J]. Energy Storage Science and Technology, 2023, 12(3): 835-845.
|
17 |
PEITZKE W R, BROWN M B. Combined synchronous and asynchronous power supply for electrically powered shuttle trains: US20120265378[P]. 2012-10-18.
|
18 |
肖立业, 史黎明, 韦统振, 等. 铁路轨道运载车辆储能系统: CN108437808A[P]. 2018-08-24.
|
|
XIAO L, SHI L, WEI T, et al. Railway track carrier vehicle energy storage system: CN108437808A[P]. 2018-08-24.
|
19 |
曾蓉. 山体储能技术及其与风电场联合出力的容量配置研究[D]. 长沙: 长沙理工大学, 2016.
|
|
ZENG R. Research on mountain energy technology and its capacity configuration with wind farm[D]. Changsha: Changsha University of Science & Technology, 2016.
|
20 |
徐焘. 基于重力储能的风光储多能源混合系统容量配置研究[D]. 武汉: 武汉理工大学, 2021.
|
|
XU T. Research on capacity configuration of the wind-photovoltaic-storage multi-energy hybrid power system based on gravity energy storage[D].Wuhan: Wuhan University of Technology, 2021.
|
21 |
BOTTENFIELD G, HATIPOGLU K, PANTA Y. Advanced rail energy and storage: Analysis of potential implementations for the state of West Virginia[C]//2018 North American Power Symposium (NAPS). Fargo, ND, USA. IEEE, 2018: 1-4.
|
22 |
侯慧, 徐焘, 肖振锋, 等. 基于重力储能的风光储联合发电系统容量规划与评价[J]. 电力系统保护与控制, 2021, 49(17): 74-84.
|
|
HOU H, XU T, XIAO Z F, et al. Optimal capacity planning and evaluation of a wind-photovoltaic-storage hybrid power system based on gravity energy storage[J]. Power System Protection and Control, 2021, 49(17): 74-84.
|
23 |
柴源. 基于改进鲸鱼算法的风-光-重力储能系统优化配置研究[D]. 西安: 西安理工大学, 2021.
|
|
CHAI Y. Study on optimal configuration of wind power-photovoltaic-gravity energy storage system based on improved whale algorithm[D]. Xi'an: Xi'an University of Technology, 2021.
|
24 |
MOAZZAMI M, MORADI J, et al. Optimal economic operation of microgrids integrating wind farms and advanced rail energy storage system[J]. International Journal of Renewable Energy Research, 2018, 8(2): 1155-1164.
|
25 |
HOU H, XU T, WU X X, et al. Optimal capacity configuration of the wind-photovoltaic-storage hybrid power system based on gravity energy storage system[J]. Applied Energy, 2020, 271: 115052.
|
26 |
刘志刚, 伍也凡, 肖振锋, 等. 基于重力储能的风光储系统多目标容量优化规划[J]. 全球能源互联网, 2021, 4(5): 464-475.
|
|
LIU Z G, WU Y F, XIAO Z F, et al. Multi-objective optimal capacity planning of the wind-photovoltaic-storage system based on gravity energy storage[J]. Journal of Global Energy Interconnection, 2021, 4(5): 464-475.
|
27 |
刘智洋, 宋杭选, 方宽, 等. 依托重力储能的高寒地区风-储联合发电系统容量优化[J]. 黑龙江电力, 2023, 45(1): 30-35.
|
|
LIU Z Y, SONG H X, FANG K, et al. Capacity optimization of wind-storage combined power generation system in alpine region based on gravity energy storage[J]. Heilongjiang Electric Power, 2023, 45(1): 30-35.
|
28 |
崔文倩, 魏军强, 赵云灏, 等. 双碳目标下含重力储能的配电网多目标运行优化[J]. 电力建设, 2023, 44(4): 45-53.
|
|
CUI W Q, WEI J Q, ZHAO Y H, et al. Multi-objective operation optimization of distribution network with gravity energy storage under double carbon target[J]. Electric Power Construction, 2023, 44(4): 45-53.
|
29 |
卢子敬, 蒋霖, 李东伟, 等. 基于鲸鱼算法的新能源储能系统调度模型研究[J]. 信息技术, 2023, 47(7): 125-130, 135.
|
|
LU Z J, JIANG L, LI D W, et al. Research on scheduling model of new energy storage system based on whale algorithm[J]. Information Technology, 2023, 47(7): 125-130, 135.
|
30 |
任永峰, 薛宇, 云平平, 等. 马尔可夫预测的多目标优化储能系统平抑风电场功率波动[J]. 电力系统自动化, 2020, 44(6): 67-74.
|
|
REN Y F, XUE Y, YUN P P, et al. Multi-objective optimization of energy storage system with Markov prediction for power fluctuation suppression of wind farm[J]. Automation of Electric Power Systems, 2020, 44(6): 67-74.
|
31 |
薛艳冰, 马大炜, 王烈. 列车牵引能耗计算方法[J]. 中国铁道科学, 2007, 28(3): 84-87.
|
|
XUE Y B, MA D W, WANG L. Calculation method of energy consumption in train traction[J]. China Railway Science, 2007, 28(3): 84-87.
|
32 |
中华人民共和国铁道部. 列车牵引计算规程: TB/T 1407—1998[S]. 北京: 中国铁道出版社, 1999.
|
33 |
WADA N, MATSUI Y. Driving force control for a vehicle considering slip ratio limitation[J]. IEEJ Transactions on Electrical and Electronic Engineering, 2019, 14(2): 297-302.
|
34 |
余志生. 汽车理论[M]. 5版. 北京: 机械工业出版社, 2009.
|
35 |
河北省发展和改革委员会关于明确居民峰谷分时电价政策的通知[EB/OL]. (2022-12-06)[2023-01-05]. https://info.hebei.gov.cn/hbszfxxgk/329975/329988/330035/6852718/7049247/index.html?eqid=9b5c7818000111990000000564268a
|