储能科学与技术 ›› 2024, Vol. 13 ›› Issue (4): 1277-1292.doi: 10.19799/j.cnki.2095-4239.2024.0107
• 电池智能制造、在线监测与原位分析专刊 • 上一篇 下一篇
孙航宇1(), 李卓华2, 王亚丽1, 李晓艳1, 付云枫1, 杜国山1, 陈宋璇1
收稿日期:
2024-02-04
修回日期:
2024-03-07
出版日期:
2024-04-26
发布日期:
2024-04-22
通讯作者:
孙航宇
E-mail:sunhy@enfi.com.cn
作者简介:
孙航宇(1997—),女,博士,从事模型研究,E-mail:sunhy@enfi.com.cn。
基金资助:
Hangyu SUN1(), Zhuohua LI2, Yali WANG1, Xiaoyan LI1, Yunfeng FU1, Guoshan DU1, Songxuan CHEN1
Received:
2024-02-04
Revised:
2024-03-07
Online:
2024-04-26
Published:
2024-04-22
Contact:
Hangyu SUN
E-mail:sunhy@enfi.com.cn
摘要:
固体氧化物燃料电池(SOFCs)是一种通过电化学氧化反应直接将化学能高效率地转化为电能的装置,在大规模发电、联产以及一体化燃料升级等可再生能源系统领域具有广阔的市场前景。为进一步拓宽SOFCs的应用场景,降低运行成本,直接内重整(DIR)技术可将CH4等烷烃类物质在阳极催化生成H2,减少了燃料预处理要求且提高了转化效率,是目前SOFCs研究领域的热点之一。为了优化该技术的系统设计和操作条件,模型模拟的研究可显著减少实验工作量,并为其提供理论支撑和指导性建议。通过DIR-SOFC系统的模型模拟,结合场分布、动力学参数等,可以量化评估系统内的反应,从而了解其物理、化学过程的复杂性。本文总结了DIR-SOFC建模工作的现状,介绍了体积平均模型和针对微观结构的模型;重点讨论多尺度数学模型,对现有研究中的反应动力学过程描述、“能量-质量-动量”平衡方程、“1D-2D-3D”DIR-SOFC单元描述等进行了综述,能更好地评估变量对DIR的影响;对DIR-SOFC模型中不同液体燃料的重整反应及相关的反应动力学参数进行总结;指出现有模型的不足,并对DIR-SOFC系统模型的未来发展进行展望,使模型更加精准。
中图分类号:
孙航宇, 李卓华, 王亚丽, 李晓艳, 付云枫, 杜国山, 陈宋璇. 固体氧化物燃料电池直接内重整的模型研究进展[J]. 储能科学与技术, 2024, 13(4): 1277-1292.
Hangyu SUN, Zhuohua LI, Yali WANG, Xiaoyan LI, Yunfeng FU, Guoshan DU, Songxuan CHEN. Research progress of model simulation of direct internal reforming in solid oxide fuel cells[J]. Energy Storage Science and Technology, 2024, 13(4): 1277-1292.
表5
CH4 重整反应速率方程以及WGS速率表达式"
参考文献 | 阳极 | 动力学类型 | 动力学表达式 | 温度/℃ | S/C | 动力学参数 |
---|---|---|---|---|---|---|
Lee等[ | Ni/YSZ金属陶瓷 | FO | 800~1000 | 2~7.4 | E=17.8~23.5 kJ/mol,k0=490~4775 mol/(g·h) | |
Achenbach等[ | Ni/ZrO2金属陶瓷 | 700~940 | 2.6~8 | E=82 kJ/mol,k0=42720 mol/(s·m2·MPa) | ||
Belyaev等[ | Ni/ZrO2/CeO2 | 800~850 | 2~4 | E=163 kJ/mol | ||
Avetisov等[ | Ni/MgO | 500~650 | E=99.77 kJ/mol,k0=2.415×107 | |||
Parsons等[ | Ni 金属陶瓷 | 加权 | 960 | 3 | k=2.4×10-3 mol/(s·bar1.25) | |
Fan等[ | Ni/GDC | 650~750 | 1.5~2.45 | E=63~88 kJ/mol,k0=1.1~18.9 mol/(s·bar0.6) | ||
Ahmed等[ | Ni/YSZ | 854~907 | 1.53~2.45 | E=95 kJ/mol,k0=8542 mol/(s·m2·bar0.5) | ||
Ni/改良的YSZ | 838~922 | 1.4~3 | E=208 kJ/mol,k0=3.6×108 mol/(s·m2·bar0.6) | |||
Timmermann等[ | Ni/CGO | 800,950 | 0~3 | k0=4.05×10-0.5 mol/(s·m2·Pa1.19) | ||
Ni/YSZ | E=26.3 kJ/mol | |||||
Yakabe等[ | Ni/YSZ | 1000 | 2 | E=1.91×105 kJ/mol,k0=1.09×1010 mol/kg,Da=930 kg/m3 | ||
Johnsen等[ | NiO/YSZ | 680~1027 | 1.5~2.5 | E=57.84 kJ/mol,k0=1.75 | ||
Sciazko等[ | NiO/YSZ | 550~750 | 3.0~6.0 | E=121.00 kJ/mol,k0=6.472×10-3 | ||
Chen等[ | Ni/Al2O3 | 500~700 | 1.5~4.5 | E=81.69 kJ/mol,k0=316.6 | ||
Fu等[ | 含稀土金属的Ni | 400~450 | E=151.46 kJ/mol,k0=168.1 kg/(m2·s·bar-0.8) | |||
Timmermann等[ | Ni/YSZ金属陶瓷 | LHHW | 600~850 | 1~3 | EA=60 kJ/mol (600~750 ℃),EA=30 kJ/mol (750~850 ℃) | |
Souentie等[ | Ni/GDC 和 Au/Ni/GDC | 800~900 | 0.25,1 | E=96~117 kJ/mol,ka=(15~45)×10-6 | ||
Xu等[ | Ni/MgAl2O4 | 500~550 | 3~5 | E=240 kJ/mol,k0=1.17×1015 bar0.5·mol/(kg·s) | ||
Bebelis等[ | Ni/YSZ金属陶瓷 | 800~900 | 0.2 | E=230 kJ/mol | ||
Hou等[ | Ni/α Al2O3 | 475~550 | 4~7 | E=209.20 kJ/mol,k0=5.922×108 | ||
Nakagawa等[ | Ni/YSZ/CeO2 | 700~1000 | 2~8 | A1=400~612 mol/(s·m2),E1=49 kJ/mol | ||
A2=3.01×10-4~4.96×10-4 kPa-1,E2=-45 kJ/mol | ||||||
A3=0.18~0.28 kPa-1,E3=7 kJ/mol | ||||||
Dicks等[ | Ni/YSZ阳极 | 700~1000 | 1~3 | E=135 kJ/mol,k0=210 mol/(s·cm2·MPa) | ||
Fu等[ | 含稀土金属的Ni | PL | 400~450 | E=78.57 kJ/mol,k0=0.2097 kg/(m2·s·bar-2.3) | ||
Hou等[ | Ni/α Al2O3 | LHHW | 475~550 | 4~7 | E=15.40 kJ/mol,k0=6.028×10-4 | |
Xu等[ | Ni/MgAl2O4 | LHHW | 500~550 | 3~5 | E=67.130 kJ/mol,k0=5.43×104 MPa·mol/(kg·s) |
表7
甲醇和乙醇蒸气重整的反应动力学参数"
动力学 | 参考文献 | 阳极 | 动力学类型 | 动力学表达式 | 温度/℃ | S/C | 动力学参数 |
---|---|---|---|---|---|---|---|
甲醇蒸气重整动力学 | Purnama等[ | CuO/ZnO/Al2O3 | PL | 230~300 | 1 | E=76 kJ/mol,k0=8.8×108 s-1·g-1 | |
Samms等[ | CuO/ZnO/Al2O4 | PL | 225,250 | 1.16,5.15 | E=74.164 kJ/mol,k0=6370 mol/(s·bar72) | ||
Ilinich等[ | CuO/ZnO/Al2O5 | PL | 230~320 | 1.13 | E=54.27 kJ/mol,k0=34.476 mol/(s·bar72) | ||
Jiang等[ | CuO/ZnO/Al2O6 | PL | 170~260 | — | E=105 kJ/mol,k0=5.31×109 mol/(kg·s·kPa0.296) | ||
Jiang等[ | CuO/ZnO/Al2O7 | LHHW | 127~327 | — | E=110 kJ/mol,k0=34.476 mol/(s·bar72) | ||
乙醇蒸气重整动力学 | Therdhianwong等[ | Ni/Al2O3 | PL | 400~650 | 0.26~10.73 | k=280075 | |
Afolabi等[ | Ni/Al2O3 | FO | 300~450 | 3 | E=48 kJ/mol,k0=13394 mol/(s·MPa·g) | ||
Tosti等[ | Pd/Ag | PL | 450 | 8.4~13 | E=4410 kJ/mol,k0=3.123×10-2 kmol0.57/(s-0.57·kg) | ||
Chen等[ | 镍基催化剂 | FO | 400~800 | 1~10 | E=130 kJ/mol,k0=7.98×10-10 mol/(s·m3) |
1 | RITCHIE H, ROSADO P, ROSER M. CO2 and greenhouse gas emissions[ED/OL]. [2023-05-07]. https://ourworldindata.org/co2-and-greenhouse-gas-emissions. |
2 | BREEZE P. Power generation technologies[M]. 3rd Ed. Newnes, 2019: 145-171. |
3 | SENGODAN S, LAN R, HUMPHREYS J, et al. Advances in reforming and partial oxidation of hydrocarbons for hydrogen production and fuel cell applications[J]. Renewable and Sustainable Energy Reviews, 2018, 82: 761-780. |
4 | PARK S, GORTE R J, VOHS J M. Applications of heterogeneous catalysis in the direct oxidation of hydrocarbons in a solid-oxide fuel cell[J]. Applied Catalysis A: General, 2000, 200(1/2): 55-61. |
5 | ALI M, ELSAID K, WILBERFORCE T, et al. Environmental aspects of fuel cells: A review[J]. Science of the Total Environment, 2021, 752: 141803. |
6 | LAOSIRIPOJANA N, ASSABUMRUNGRAT S. Catalytic steam reforming of methane, methanol, and ethanol over Ni/YSZ: The possible use of these fuels in internal reforming SOFC[J]. Journal of Power Sources, 2007, 163(2): 943-951. |
7 | Intergovernmental Panel on Climate Change. Climate change 2007[M]. Cambridge: Cambridge University Press, 2007. |
8 | HASELI Y. Maximum conversion efficiency of hydrogen fuelcells[J]. International Journal of Hydrogen Energy, 2018, 43(18): 9015-9021. |
9 | VAN BIERT L, GODJEVAC M, VISSER K, et al. Dynamic modelling of a direct internal reforming solid oxide fuel cell stack based on single cell experiments[J]. Applied Energy, 2019, 250: 976-990. |
10 | 栾凯夫, 蔡长焜, 谢满意, 等. 固体氧化物燃料电池气流和热场的宏观尺度数值模拟研究进展[J]. 储能科学与技术, 2023, 12(9): 2985-3002. |
LUAN K F, CAI C K, XIE M Y, et al. Research progress of macroscale numerical simulation of fluid and thermal fields of solid oxide fuel cells[J]. Energy Storage Science and Technology, 2023, 12(9): 2985-3002. | |
11 | DWIVEDI S. Solid oxide fuel cell: Materials for anode, cathode and electrolyte[J]. International Journal of Hydrogen Energy, 2020, 45(44): 23988-24013. |
12 | FAKEEHA A H, ABD EL ALEEM F A, ETTOUNEY H M. The internal reforming fuel cells as a clean energy system for natural gas utilization in the Kingdom[J]. Journal of King Saud University-Engineering Sciences, 1995, 7: 171-188. |
13 | DICKS A L. Fuel cell systems explained[M]. Wiley, 2018. |
14 | SETTAR A, LEBAAL N, ABBOUDI S. Numerical analysis of catalytic-coated walls of an indirect internal reforming solid oxide fuel cell: Influence of catalyst coating distribution on the reformer efficiency[J]. Energy Conversion and Management, 2018, 176(8): 357-371. |
15 | DOKAMAINGAM P, ASSABUMRUNGRAT S, SOOTTITANTAWAT A, et al. Modeling of SOFC with indirect internal reforming operation: Comparison of conventional packed-bed and catalytic coated-wall internal reformer[J]. International Journal of Hydrogen Energy, 2009, 34(1): 410-421. |
16 | AHMED K, FOGER K. Kinetics of internal steam reforming of methane on Ni/YSZ-based anodes for solid oxide fuel cells[J]. Catalysis Today, 2000, 63(2/3/4): 479-487. |
17 | BODER M, DITTMEYER R. Catalytic modification of conventional SOFC anodes with a view to reducing their activity for direct internal reforming of natural gas[J]. Journal of Power Sources, 2006, 155(1): 13-22. |
18 | ABBAS S Z, DUPONT V, MAHMUD T. Kinetics study and modelling of steam methane reforming process over a NiO/Al2O3 catalyst in an adiabatic packed bed reactor[J]. International Journal of Hydrogen Energy, 2017, 42(5): 2889-2903. |
19 | HAMZA FAHEEM H, TANVEER H U, ABBAS S Z, et al. Comparative study of conventional steam-methane-reforming (SMR) and auto-thermal-reforming (ATR) with their hybrid sorption enhanced (SE-SMR & SE-ATR) and environmentally benign process models for the hydrogen production[J]. Fuel, 2021, 297: 120769. |
20 | BRUS G. Experimental and numerical studies on chemically reacting gas flow in the porous structure of a solid oxide fuel cells internal fuel reformer[J]. International Journal of Hydrogen Energy, 2012, 37(22): 17225-17234. |
21 | CHAUDHARY T N, MEHMOOD M, SALEEM U, et al. Modeling of thermal impacts in a single direct methane steam reforming solid oxide fuel cell[J]. Journal of Power Sources, 2020, 472: 228605. |
22 | DILLIG M, PLANKENBÜHLER T, KARL J. Thermal effects of planar high temperature heat pipes in solid oxide cell stacks operated with internal methane reforming[J]. Journal of Power Sources, 2018, 373: 139-149. |
23 | AHMED K, FӦGER K. Analysis of equilibrium and kinetic models of internal reforming on solid oxide fuel cell anodes: Effect on voltage, current and temperature distribution[J]. Journal of Power Sources, 2017, 343: 83-93. |
24 | LYU Z W, SHI W Y, HAN M F. Electrochemical characteristics and carbon tolerance of solid oxide fuel cells with direct internal dry reforming of methane[J]. Applied Energy, 2018, 228: 556-567. |
25 | BAE J. Fuel processor lifetime and reliability in solid oxide fuel cells[M]//Solid oxide fuel cell lifetime and reliability: Critical challenges in fuel cells. Elsevier, 2017. |
26 | YURKIV V. Reformate-operated SOFC anode performance and degradation considering solid carbon formation: A modeling and simulation study[J]. Electrochimica Acta, 2014, 143: 114-128. |
27 | CLARKE S H, DICKS A L, POINTON K, et al. Catalytic aspects of the steam reforming of hydrocarbons in internal reforming fuel cells[J]. Catalysis Today, 1997, 38(4): 411-423. |
28 | VASUDEVA K, MITRA N, UMASANKAR P, et al. Steam reforming of ethanol for hydrogen production: Thermodynamic analysis[J]. International Journal of Hydrogen Energy, 1996, 21(I): 13-18. |
29 | TSIAKARAS P, DEMIN A. Thermodynamic analysis of a solid oxide fuel cell system fuelled by ethanol[J]. Journal of Power Sources, 2001, 102(1/2): 210-217. |
30 | ASSABUMRUNGRAT S, PAVARAJARN V, CHAROJROCHKUL S, et al. Thermodynamic analysis for a solid oxide fuel cell with direct internal reforming fueled by ethanol[J]. Chemical Engineering Science, 2004, 59(24): 6015-6020. |
31 | RIENSCHE E, MEUSINGER J, STIMMING U, et al.Optimization of a 200 kW SOFC cogeneration power plant,Part II: Variation of the flowsheet[J]. Journal of Power Sources,1998,71:306–314. |
32 | VAN BIERT L, VISSER K, ARAVIND P V. A comparison of steam reforming concepts in solid oxide fuel cell systems[J]. Applied Energy, 2020, 264(2): 114748. |
33 | PETERS R, RIENSCHE E, CREMER P. Pre-reforming of natural gas in solid oxide fuel-cell systems[J]. Journal of Power Sources, 2000, 86(1/2): 432-441. |
34 | WONGCHANAPAI S, IWAI H, SAITO M, et al. Selection of suitable operating conditions for planar anode-supported direct-internal-reforming solid-oxide fuel cell[J]. Journal of Power Sources, 2012, 204: 14-24. |
35 | KANG Y W, LI J, CAO G Y, et al. A reduced 1D dynamic model of a planar direct internal reforming solid oxide fuel cell for system research[J]. Journal of Power Sources, 2009, 188(1): 170-176. |
36 | NAGATA S, MOMMA A, KATO T, et al. Numerical analysis of output characteristics of tubular SOFC with internal reformer[J]. Journal of Power Sources, 2001, 101(1): 60-71. |
37 | AGUIAR P, ADJIMAN C S, BRANDON N P. Anode-supported intermediate temperature direct internal reforming solid oxide fuel cell. I: Model-based steady-state performance[J]. Journal of Power Sources, 2004, 138(1/2): 120-136. |
38 | CHALUSIAK M, WROBEL M, MOZDZIERZ M, et al. A numerical analysis of unsteady transport phenomena in a direct internal reforming solid oxide fuel cell[J]. International Journal of Heat and Mass Transfer, 2019, 131: 1032-1051. |
39 | HO T X, KOSINSKI P, HOFFMANN A C, et al. Effects of heat sources on the performance of a planar solid oxide fuel cell[J]. International Journal of Hydrogen Energy, 2010, 35(9): 4276-4284. |
40 | AHMAD HAJIMOLANA S, HUSSAIN M A, DAUD W M A W, et al. Mathematical modeling of solid oxide fuel cells: A review[J]. Renewable and Sustainable Energy Reviews, 2011, 15(4): 1893-1917. |
41 | WASSILJEWA A. Wärmeleitung in Gasgemischen[J]. Physikalische Zeitschrift, 1904,5: 737-742. |
42 | MASON E A, SAXENA S C. Approximate formula for the thermal conductivity of gas mixtures[J]. The Physics of Fluids, 1958, 1(5): 361-369. |
43 | MOZDZIERZ M, BRUS G, SCIAZKO A, et al. Towards a thermal optimization of a methane/steam reforming reactor[J]. Flow, Turbulence and Combustion, 2016, 97(1): 171-189. |
44 | QI Y T, HUANG B, LUO J L. Dynamic modeling of a finite volume of solid oxide fuel cell: The effect of transport dynamics[J]. Chemical Engineering Science, 2006, 61(18): 6057-6076. |
45 | SUWANWARANGKUL R, CROISET E, ENTCHEV E, et al. Experimental and modeling study of solid oxide fuel cell operating with syngas fuel[J]. Journal of Power Sources, 2006, 161(1): 308-322. |
46 | KAKAC S, PRAMUANJAROENKIJ A, ZHOU X Y. A review of numerical modeling of solid oxide fuel cells[J]. International Journal of Hydrogen Energy, 2007, 32(7): 761-786. |
47 | SEADER J D, HENLEY E J, ROPER D K. Separation process principles[M]. 3rd ed. John Wiley & Sons, Inc: 2011. |
48 | BAO C, JIANG Z Y, ZHANG X X. Modeling mass transfer in solid oxide fuel cell anode: I. Comparison between Fickian, Stefan-Maxwell and dusty-gas models[J]. Journal of Power Sources, 2016, 310: 32-40. |
49 | TODD B, YOUNG J B. Thermodynamic and transport properties of gases for use in solid oxide fuel cell modelling[J]. Journal of Power Sources, 2002, 110(1): 186-200. |
50 | KIM-LOHSOONTORN P, PRIYAKORN F, WETWATANA U, et al. Modelling of a tubular solid oxide fuel cell with different designs of indirect internal reformer[J]. Journal of Energy Chemistry, 2014, 23(2): 251-263. |
51 | HABERMAN B A, YOUNG J B. Three-dimensional simulation of chemically reacting gas flows in the porous support structure of an integrated-planar solid oxide fuel cell[J]. International Journal of Heat and Mass Transfer, 2004, 47(17/18): 3617-3629. |
52 | KUPECKI J, MOTYLINSKI K, MILEWSKI J. Dynamic modelling of the direct internal reforming (DIR) of methane in 60-cell stack with electrolyte supported cells[J]. Energy Procedia, 2017, 105: 1700-1705. |
53 | NIKOOYEH K, JEJE A A, HILL J M. 3D modeling of anode-supported planar SOFC with internal reforming of methane[J]. Journal of Power Sources, 2007, 171(2): 601-609. |
54 | HETNARSKI R B, ESLAMI M R. Thermal stresses – Advanced theory and applications[M]. Dordrecht: Springer, 2009. |
55 | YAKABE H, OGIWARA T, HISHINUMA M, et al. 3-D model calculation for planar SOFC[J]. Journal of Power Sources, 2001, 102(1/2): 144-154. |
56 | TAKAHASHI Y, SHIRATORI Y, FURUTA S, et al. Thermo-mechanical reliability and catalytic activity of Ni-zirconia anode supports in internal reforming SOFC running on biogas[J]. Solid State Ionics, 2012, 225: 113-117. |
57 | ASINARI P, QUAGLIA M C, VON SPAKOVSKY M R, et al. Numerical simulations of reactive mixture flow in the anode layer of solid oxide fuel cells by the lattice Boltzmann method[C]// 8th Biennial ASME Conference on Engineering Systems Design and Analysis, 2006. |
58 | Trini M, Hauch A, DE ANGELIS S, et al. Comparison of microstructural evolution of fuel electrodes in solid oxide fuel cells and electrolysis cells[J]. Journal of Power Sources, 2020, 450: 227599. |
59 | 李强强, 薛顶喜, 马帅, 等. 固体氧化物燃料电池阳极微结构三维数值模拟[J]. 工程热物理学报, 2023, 44(5): 1309-1315. |
LI Q Q, XUE D X, MA S, et al. Three-dimensional numerical simulation of solid oxide fuel cell anode microstructure[J]. Journal of Engineering Thermophysics, 2023, 44(5): 1309-1315. | |
60 | SCIAZKO A, KOMATSU Y, NAKAMURA A, et al. 3D microstructures of solid oxide fuel cell Ni-YSZ anodes with carbon deposition[J]. Chemical Engineering Journal, 2023, 460:141680. |
61 | BRUS G, IWAI H, MOZDZIERZ M, et al. Combining structural, electrochemical, and numerical studies to investigate the relation between microstructure and the stack performance[J]. Journal of Applied Electrochemistry, 2017, 47(9): 979-989. |
62 | ANSELMI-TAMBURINI U, CHIODELLI G, ARIMONDI M, et al. Electrical properties of Ni/YSZ cermets obtained through combustion synthesis[J]. Solid State Ionics, 1998, 110(1/2): 35-43. |
63 | BRUS G, RACZKOWSKI P F, KISHIMOTO M, et al. A microstructure-oriented mathematical model of a direct internal reforming solid oxide fuel cell[J]. Energy Conversion and Management, 2020, 213: 112826. |
64 | MASON E A, MALINAUSKAS A P, EVANS R B III. Flow and diffusion of gases in porous media[J]. The Journal of Chemical Physics, 1967, 46(8): 3199-3216. |
65 | ZHU H Y, KEE R J, JANARDHANAN V M, et al. Modeling elementary heterogeneous chemistry and electrochemistry in solid-oxide fuel cells[J]. Journal of the Electrochemical Society, 2005, 152(12): A2427. |
66 | LI M, POWERS J D, BROUWER J. A finite volume SOFC model for coal-based integrated gasification fuel cell systems analysis[J]. Journal of Fuel Cell Science and Technology, 2010, 7(4): 1. |
67 | LI Q Q, CHAI D, WANG L, et al. Fine three-dimensional simulation of the heterogeneous anode of a solid oxide fuel cell with direct internal reforming[J]. Chemical Engineering Science, 2021, 242: 116747. |
68 | 赵婧. 甲烷直接内重整固体氧化物燃料电池模型研究[D]. 太原: 太原科技大学, 2023: 38-43. |
ZHAO J. Study on the model of solid oxide fuel cell with direct internal reforming of methane[D]. Taiyuan: Taiyuan University of Science and Technology, 2023: 38-43. | |
69 | CHAUDHARY T N, SALEEM U, CHEN B X. Reacting flow coupling with thermal impacts in a single solid oxide fuel cell[J]. International Journal of Hydrogen Energy, 2019, 44(16): 8425-8438. |
70 | TABISH A N, FAN L Y, FARHAT I, et al. Computational fluid dynamics modeling of anode-supported solid oxide fuel cells using triple-phase boundary-based kinetics[J]. Journal of Power Sources, 2021, 513: 230564. |
71 | LI J, CAO G Y, ZHU X J, et al. Two-dimensional dynamic simulation of a direct internal reforming solid oxide fuel cell[J]. Journal of Power Sources, 2007, 171(2): 585-600. |
72 | PARK J, LI P W, BAE J. Analysis of chemical, electrochemical reactions and thermo-fluid flow in methane-feed internal reforming SOFCs: Part I-Modeling and effect of gas concentrations[J]. International Journal of Hydrogen Energy, 2012, 37(10): 8512-8531. |
73 | STILLER C, THORUD B, SELJEBØ S, et al. Finite- volume modeling and hybrid-cycle performance of planar and tubular solid oxide fuel cells[J]. Journal of Power Sources, 2005, 141(2): 227-240. |
74 | FAN L, VAN BIERT L, THALLAM THATTAI A, et al. Study of methane steam reforming kinetics in operating solid oxide fuel cells: influence of current density[J]. International Journal of Hydrogen Energy, 2015, 40(15): 5150-5159. |
75 | THALLAM THATTAI A, VAN BIERT L, ARAVIND P V. On direct internal methane steam reforming kinetics in operating solid oxide fuel cells with nickel-ceria anodes[J]. Journal of Power Sources, 2017, 370: 71-86. |
76 | MOGENSEN D, GRUNWALDT J D, HENDRIKSEN P V, et al. Internal steam reforming in solid oxide fuel cells: Status and opportunities of kinetic studies and their impact on modelling[J]. Journal of Power Sources, 2011, 196(1): 25-38. |
77 | LEE A L, ZABRANSKY R F, HUBER W J. Internal reforming development for solid oxide fuel cells[J]. Industrial & Engineering Chemistry Research, 1990, 29(5): 766-773. |
78 | ACHENBACH E, RIENSCHE E. Methane/steam reforming kinetics for solid oxide fuel cells[J]. Journal of Power Sources, 1994, 52(2): 283-288. |
79 | BELYAEV V D, POLITOVA T I, MAR'INA O A, et al. Internal steam reforming of methane over Ni-based electrode in solid oxide fuel cells[J]. Applied Catalysis A: General, 1995, 133(1): 47-57. |
80 | AVETISOV A K, ROSTRUP-NIELSEN J R, KUCHAEV V L, et al. Steady-state kinetics and mechanism of methane reforming with steam and carbon dioxide over Ni catalyst[J]. Journal of Molecular Catalysis A: Chemical, 2010, 315(2): 155-162. |
81 | PARSONS J, RANDALL S, Experimental determination of kinetic rate data for sofc anodes[R]. SOFC-micromodelling, IEA-SOFC Task Report, 1992. |
82 | TIMMERMANN H, FOUQUET D, WEBER A, et al. Internal reforming of methane at Ni/YSZ and Ni/CGO SOFC cermet anodes[J]. Fuel Cells, 2006, 6(3/4): 307-313. |
83 | ØDEGÅRD R, JOHNSEN E, KAROLIUSSEN H. Methane reforming on Ni/zirconia SOFC anodes[C]// Fourth International Symposium on Solid Oxide Fuel Cells (SOFC-IV), The Electrochemical Society, 1995. |
84 | SCIAZKO A, KOMATSU Y, BRUS G, et al. A novel approach to the experimental study on methane/steam reforming kinetics using the orthogonal least squares method[J]. Journal of Power Sources, 2014, 262: 245-254. |
85 | CHEN K, ZHAO Y J, ZHANG W D, et al. The intrinsic kinetics of methane steam reforming over a nickel-based catalyst in a micro fluidized bed reaction system[J]. International Journal of Hydrogen Energy, 2020, 45(3): 1615-1628. |
86 | FU W B, HOU L Y, ZHONG B J, et al. An analysis of the ignition of premixed gases by a hot spherical surface with catalytic reforming reaction[J]. Fuel, 2003, 82(5): 539-544. |
87 | TIMMERMANN H, SAWADY W, REIMERT R, et al. Kinetics of (reversible) internal reforming of methane in solid oxide fuel cells under stationary and APU conditions[J]. Journal of Power Sources, 2010, 195(1): 214-222. |
88 | SOUENTIE S, ATHANASIOU M, NIAKOLAS D K, et al. Mathematical modeling of Ni/GDC and Au-Ni/GDC SOFC anodes performance under internal methane steam reforming conditions[J]. Journal of Catalysis, 2013, 306: 116-128. |
89 | XU J G, FROMENT G F. Methane steam reforming, methanation and water-gas shift: I. Intrinsic kinetics[J]. AIChE Journal, 1989, 35(1): 88-96. |
90 | BEBELIS S, ZERITIS A, TIROPANI C, et al. Intrinsic kinetics of the internal steam reforming of CH4 over a Ni-YSZ-cermet catalyst-electrode[J]. Industrial & Engineering Chemistry Research, 2000, 39(12): 4920-4927. |
91 | HOU K H, HUGHES R. The kinetics of methane steam reforming over a Ni/α-Al2O catalyst[J]. Chemical Engineering Journal, 2001, 82(1/2/3): 311-328. |
92 | NAKAGAWA N, SAGARA H, KATO K. Catalytic activity of Ni-YSZ-CeO2 anode for the steam reforming of methane in a direct internal-reforming solid oxide fuel cell[J]. Journal of Power Sources, 2001, 92(1/2): 88-94. |
93 | DICKS A L, POINTON K D, SIDDLE A. Intrinsic reaction kinetics of methane steam reforming on a nickel/zirconia anode[J]. Journal of Power Sources, 2000, 86(1/2): 523-530. |
94 | SOHN S, BAEK S M, NAM J H, et al. Two-dimensional micro/macroscale model for intermediate-temperature solid oxide fuel cells considering the direct internal reforming of methane[J]. International Journal of Hydrogen Energy, 2016, 41(12): 5582-5597. |
95 | MOHAMMED H, AL-OTHMAN A, NANCARROW P, et al. Direct hydrocarbon fuel cells: A promising technology for improving energy efficiency[J]. Energy, 2019, 172: 207-219. |
96 | CHEEKATAMARLA P, FINNERTY C, CAI J. Internal reforming of hydrocarbon fuels in tubular solid oxide fuel cells[J]. International Journal of Hydrogen Energy, 2008, 33(7): 1853-1858. |
97 | KRONEMAYER H, BARZAN D, HORIUCHI M, et al. A direct-flame solid oxide fuel cell (DFFC) operated on methane, propane, and butane[J]. Journal of Power Sources, 2007, 166(1): 120-126. |
98 | CHEN B, XU H R, TAN P, et al. Thermal modelling of ethanol-fuelled solid oxide fuel cells[J]. Applied Energy, 2019, 237: 476-486. |
99 | YANG X S, WANG S, LI B W, et al. Performance of ethanol steam reforming in a membrane-assisted packed bed reactor using multiscale modelling[J]. Fuel, 2020, 274: 117829. |
100 | LINDSTRÖM B. Hydrogen generation by steam reforming of methanol over copper-based catalysts for fuel cell applications[J]. International Journal of Hydrogen Energy, 2001, 26(9): 923-933. |
101 | CHEEKATAMARLA P K, FINNERTY C M, DU Y H, et al. Advanced tubular solid oxide fuel cells with high efficiency for internal reforming of hydrocarbon fuels[J]. Journal of Power Sources, 2009, 188(2): 521-526. |
102 | PATEL S, PANT K K. Activity and stability enhancement of copper-alumina catalysts using cerium and zinc promoters for the selective production of hydrogen via steam reforming of methanol[J]. Journal of Power Sources, 2006, 159(1): 139-143. |
103 | HUANG G, LIAW B J, JHANG C J, et al. Steam reforming of methanol over CuO/ZnO/CeO2/ZrO2/Al2O3 catalysts[J]. Applied Catalysis A: General, 2009, 358(1): 7-12. |
104 | FRENI S, MAGGIO G, CAVALLARO S. Ethanol steam reforming in a molten carbonate fuel cell: A thermodynamic approach[J]. Journal of Power Sources, 1996, 62(1): 67-73. |
105 | JEONG H, KANG M. Hydrogen production from butane steam reforming over Ni/Ag loaded MgAl2O4 catalyst[J]. Applied Catalysis B: Environmental, 2010, 95(3/4): 446-455. |
106 | AL-MUSA A, AL-SALEH M, IOAKEIMIDIS Z C, et al. Hydrogen production by iso-octane steam reforming over Cu catalysts supported on rare earth oxides (REOs)[J]. International Journal of Hydrogen Energy, 2014, 39(3): 1350-1363. |
107 | AL-MUSA A A, IOAKEIMIDIS Z S, AL-SALEH M S, et al. Steam reforming of iso-octane toward hydrogen production over mono- and bi-metallic Cu-Co/CeO2 catalysts: Structure-activity correlations[J]. International Journal of Hydrogen Energy, 2014, 39(34): 19541-19554. |
108 | PURNAMA H, RESSLER T, JENTOFT R E, et al. CO formation/selectivity for steam reforming of methanol with a commercial CuO/ZnO/Al2O3 catalyst[J]. Applied Catalysis A: General, 2004, 259(1): 83-94. |
109 | SAMMS S. Kinetics of methanol-steam reformation in an internal reforming fuel cell[J]. Journal of Power Sources, 2002, 112(1): 13-29. |
110 | ILINICH O M, LIU Y, WATERMAN E M, et al. Kinetics of methanol steam reforming with a Pd-Zn-Y/CeO2 catalyst under realistic operating conditions of a portable reformer in fuel cell applications[J]. Industrial & Engineering Chemistry Research, 2013, 52(2): 638-644. |
111 | JIANG C J, TRIMM D L, WAINWRIGHT M S, et al. Kinetic study of steam reforming of methanol over copper-based catalysts[J]. Applied Catalysis A: General, 1993, 93(2): 245-255. |
112 | JIANG C J, TRIMM D L, WAINWRIGHT M S, et al. Kinetic mechanism for the reaction between methanol and water over a Cu-ZnO-Al2O3 catalyst[J]. Applied Catalysis A: General, 1993, 97(2): 145-158. |
113 | THERDTHIANWONG A, SAKULKOAKIET T, THERDTHIANWONG S. Hydrogen production by catalytic ethanol steam reforming[J]. Science Asia, 2001, 27(3): 193. |
114 | AFOLABI A T F, KECHAGIOPOULOS P N, LIU Y R, et al. Kinetic features of ethanol steam reforming and decomposition using a biochar-supported Ni catalyst[J]. Fuel Processing Technology, 2021, 212: 106622. |
115 | TOSTI S, BASILE A, BORELLI R, et al. Ethanol steam reforming kinetics of a Pd-Ag membrane reactor[J]. International Journal of Hydrogen Energy, 2009, 34(11): 4747-4754. |
116 | CHEN W H, LU C Y, TRAN K Q, et al. A new design of catalytic tube reactor for hydrogen production from ethanol steam reforming[J]. Fuel, 2020, 281: 118746. |
117 | BADWAL S P S, GIDDEY S, KULKARNI A, et al. Direct ethanol fuel cells for transport and stationary applications-A comprehensive review[J]. Applied Energy, 2015, 145: 80-103. |
118 | CIMENTI M, HILL J. Direct utilization of liquid fuels in SOFC for portable applications: Challenges for the selection of alternative anodes[J]. Energies, 2009, 2(2): 377-410. |
119 | THATTARATHODY R, SHEINTUCH M. Kinetics and dynamics of methanol steam reforming on CuO/ZnO/alumina catalyst[J]. Applied Catalysis A: General, 2017, 540: 47-56. |
120 | AL-MUSA A, KAKLIDIS N, AL-SALEH M, et al. Iso-octane internal reforming in a solid oxide cell reactor[J]. Solid State Ionics, 2016, 288: 135-139. |
121 | ALI SAADABADI S, THALLAM THATTAI A, FAN L Y, et al. Solid oxide fuel cells fuelled with biogas: Potential and constraints[J]. Renewable Energy, 2019, 134: 194-214. |
122 | GIRONA K, LAURENCIN J, FOULETIER J, et al. Carbon deposition in CH4/CO2 operated SOFC: Simulation and experimentation studies[J]. Journal of Power Sources, 2012, 210: 381-391. |
123 | 霍海波, 朱新坚, 曹广益. SOFC建模与控制策略的研究现状与发展[J]. 电源技术, 2007, 31(10): 833-836. |
HUO H B, ZHU X J, CAO G Y. Research status and development of modeling and controlling for SOFC[J]. Chinese Journal of Power Sources, 2007, 31(10): 833-836. |
[1] | 栾凯夫, 蔡长焜, 谢满意, 张纯, 郑坤灿, 安胜利. 固体氧化物燃料电池气流和热场的宏观尺度数值模拟研究进展[J]. 储能科学与技术, 2023, 12(9): 2985-3002. |
[2] | 董乐贤, 郑群, 黄悦, 田志鹏, 刘建平, 王超, 梁波, 雷励斌. 管状固体氧化物燃料电池前沿技术研究进展[J]. 储能科学与技术, 2023, 12(1): 131-138. |
[3] | 刘长洋, 卞刘振, 郜建全, 彭继华, 彭军, 安胜利. 固体氧化物燃料电池La0.7Sr0.3Fe0.9Ni0.1O3-δ 对称电极的电化学性能[J]. 储能科学与技术, 2022, 11(7): 2059-2065. |
[4] | 田辉, 华栋, 曼茂立, 刘春哲, 李国君, 张兄文. 板式固体氧化物燃料电池积碳特性实验[J]. 储能科学与技术, 2022, 11(5): 1314-1321. |
[5] | 田辉, 华栋, 曼茂立, 刘春哲, 李国君, 张兄文. 板式固体氧化物燃料电池积碳特性的数值研究[J]. 储能科学与技术, 2022, 11(1): 291-296. |
[6] | 李萍萍, 陈姗姗, 赵璐璐, 史明亮, 黄岩, 李初福. 整体煤气化固体氧化物燃料电池并网测试系统设计[J]. 储能科学与技术, 2021, 10(6): 2039-2045. |
[7] | 韩婷婷, 吴玉玺, 解子恒, 孟秀霞, 张津津, 解玉姣, 于方永, 杨乃涛. 固体氧化物燃料电池镍基阳极积碳机理及性能提升策略研究进展[J]. 储能科学与技术, 2021, 10(6): 1931-1942. |
[8] | 韦守李, 李希超, 常修亮, 陈兵, 许卓, 张涛, 郑莉莉, 戴作强. 固体氧化物燃料电池双极板材料发展综述[J]. 储能科学与技术, 2021, 10(6): 1943-1951. |
[9] | 练文超, 雷励斌, 梁波, 王超, 魏磊, 田志鹏, 刘建平, 杨华政, 梁家健, 施涛. 质子导体固体氧化物电化学装置中氨的利用与合成[J]. 储能科学与技术, 2021, 10(6): 1998-2007. |
[10] | 吴玉玺, 韩婷婷, 解子恒, 李琳, 宋艳雯, 梁加仓, 张津津, 于方永, 杨乃涛. 直接碳固体氧化物燃料电池研究进展:碳燃料和逆向Boudouard反应催化剂[J]. 储能科学与技术, 2021, 10(6): 1977-1986. |
[11] | 郑丽娜, 王文中, 贾凯杰, 邱少峰, 朱浩源, 于方永, 孟秀霞, 张津津, 杨乃涛. 3D打印技术在固体氧化物燃料电池领域的研究进展[J]. 储能科学与技术, 2021, 10(6): 1952-1962. |
[12] | 于旺, 孙超, 齐冀, 卞刘振, 彭继华, 彭军, 安胜利. 固体氧化物电池Sr2-xFe1.5Mo0.5O6-δ氧电极材料的电化学性能[J]. 储能科学与技术, 2021, 10(6): 2020-2027. |
[13] | 董旭, 杜志鸿, 张旸, 李科云, 赵海雷. 固体氧化物燃料电池高催化活性阴极材料SrFeF x O3- x - δ [J]. 储能科学与技术, 2020, 9(2): 415-424. |
[14] | 吕泽伟,韩敏芳. 光伏、光热联合SOC制氢、发电系统设计[J]. 储能科学与技术, 2017, 6(2): 275-279. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||