1 |
BRUCE P G, FREUNBERGER S A, HARDWICK L J, et al. Li-O2 and Li-S batteries with high energy storage[J]. Nature Materials, 2011, 11(1): 19-29. DOI: 10.1038/nmat3191.
|
2 |
LI T, BAI X, GULZAR U, et al. A comprehensive understanding of lithium-sulfur battery technology[J]. Advanced Functional Materials, 2019, 29(32): 1901730. DOI: 10.1002/adfm.201901730.
|
3 |
张弘, 张阳, 赵耀, 等. 固固转化反应硫正极的研究进展[J]. 储能科学与技术, 2022, 11(6): 1919-1933.
|
|
ZHANG H, ZHANG Y, ZHAO Y, et al. Research progress of sulfur cathode in solid-solid conversion reaction[J]. Energy Storage Science and Technology, 2022, 11(6): 1919-1933.
|
4 |
YAO W Q, XU J, MA L B, et al. Recent progress for concurrent realization of shuttle-inhibition and dendrite-free lithium-sulfur batteries[J]. Advanced Materials, 2023, 35(32): e2212116. DOI: 10.1002/adma.202212116.
|
5 |
王维坤, 王安邦, 金朝庆. 锂硫电池的实用化挑战[J]. 储能科学与技术, 2020, 9(2): 593-597. DOI: 10.19799/j.cnki.2095-4239.2019.0295.
|
|
WANG W K, WANG A B, JIN Z Q. Challenges on practicalization of lithium sulfur batteries[J]. Energy Storage Science and Technology, 2020, 9(2): 593-597. DOI: 10.19799/j.cnki.2095-4239.2019.0295.
|
6 |
KIM J T, RAO A, NIE H Y, et al. Manipulating Li2S2/Li2S mixed discharge products of all-solid-state lithium sulfur batteries for improved cycle life[J]. Nature Communications, 2023, 14(1): 6404. DOI: 10.1038/s41467-023-42109-5.
|
7 |
SHI H F, LV W, ZHANG C, et al. Functional carbons remedy the shuttling of polysulfides in lithium-sulfur batteries: Confining, trapping, blocking, and breaking up[J]. Advanced Functional Materials, 2018, 28(38): 1800508. DOI: 10.1002/adfm.201800508.
|
8 |
HUANG L, ZHOU W, CHENG S, et al. Preparation of functional groups-rich graphene oxide for high-performance lithium-sulfur batteries[J]. Materials Today Sustainability, 2023, 21: 100300. DOI: 10.1016/j.mtsust.2022.100300.
|
9 |
HUANG L, SHEN S H, ZHONG Y, et al. Multifunctional hyphae carbon powering lithium-sulfur batteries[J]. Advanced Materials, 2022, 34(6): DOI: 10.1002/adma.202107415.
|
10 |
LI J, LIU L P, WANG J X, et al. Freestanding TiO2 nanoparticle-embedded high directional carbon composite host for high-loading low-temperature lithium-sulfur batteries[J]. ACS Sustainable Chemistry & Engineering, 2023, 11(9): 3657-3663. DOI: 10.1021/acssuschemeng.2c06482.
|
11 |
QIU H L, WANG T, LV W H, et al. Three-dimensional carbon foam decorated with SnO2 as multifunctional host for lithium sulfur batteries[J]. Journal of Colloid and Interface Science, 2023, 630: 106-114. DOI: 10.1016/j.jcis.2022.10.006.
|
12 |
DONG X J, DENG Q, LIANG F X, et al. Vanadium-based compounds and heterostructures as functional sulfur catalysts for lithium-sulfur battery cathodes[J]. Journal of Energy Chemistry, 2023, 86: 118-134. DOI: 10.1016/j.jechem.2023.07.003.
|
13 |
WANG J Y, LI G R, ZHANG X M, et al. Undercoordination chemistry of sulfur electrocatalyst in lithium-sulfur batteries[J]. Advanced Materials, 2024, 36(14): DOI: 10.1002/adma.202311019.
|
14 |
TIAN D, SONG X Q, WANG M X, et al. MoN supported on graphene as a bifunctional interlayer for advanced Li-S batteries[J]. Advanced Energy Materials, 2019, 9(46): DOI: 10.1002/aenm.201901940.
|
15 |
MA F, YU B, ZHANG X J, et al. WN0.67-embedded N-doped graphene-nanosheet interlayer as efficient polysulfide catalyst and absorbant for high-performance lithium-sulfur batteries[J]. Chemical Engineering Journal, 2022, 431: 133439. DOI: 10.1016/j.cej.2021.133439.
|
16 |
XU W, BI R Y, YANG M, et al. Hollow multishelled structural TiN as multi-functional catalytic host for high-performance lithium-sulfur batteries[J]. Nano Research, 2023, 16(11): 12745-12752. DOI: 10.1007/s12274-023-6144-6.
|
17 |
SONG Y Z, ZHAO W, KONG L, et al. Synchronous immobilization and conversion of polysulfides on a VO2-VN binary host targeting high sulfur load Li-S batteries[J]. Energy & Environmental Science, 2018, 11(9): 2620-2630. DOI: 10.1039/C8EE01402G.
|
18 |
ZHANG H, ONO L K, TONG G Q, et al. Long-life lithium-sulfur batteries with high areal capacity based on coaxial CNTs@TiN-TiO2 sponge[J]. Nature Communications, 2021, 12(1): 4738. DOI: 10.1038/s41467-021-24976-y.
|
19 |
XUE P, ZHU K P, GONG W B, et al. "One stone two birds" design for dual-functional TiO2-TiN heterostructures enabled dendrite-free and kinetics-enhanced lithium-sulfur batteries[J]. Advanced Energy Materials, 2022, 12(18): 2200308. DOI: 10.1002/aenm.202200308.
|
20 |
PU J, WANG Z H, XUE P, et al. The effect of NiO-Ni3N interfaces in in situ formed heterostructure ultrafine nanoparticles on enhanced polysulfide regulation in lithium-sulfur batteries[J]. Journal of Energy Chemistry, 2022, 68: 762-770. DOI: 10.1016/j.jechem.2021.12.043.
|
21 |
LIU B T, LI H, SHI C L, et al. Multifunctional integrated VN/V2O5 heterostructure sulfur hosts for advanced lithium-sulfur batteries[J]. Nanoscale, 2022, 14(12): 4557-4565. DOI: 10.1039/d1nr08292b.
|
22 |
WANG X, CHEN Z, QIU S S, et al. Design of WO2.83-WN heterostructure bidirectional catalyst for high-performance lithium-sulfur batteries[J]. ACS Applied Energy Materials, 2024, 7(2): 689-696. DOI: 10.1021/acsaem.3c02715.
|
23 |
HU L Y, DAI C L, LIU H, et al. Double-shelled NiO-NiCo2O4 Heterostructure@Carbon hollow nanocages as an efficient sulfur host for advanced lithium-sulfur batteries[J]. Advanced Energy Materials, 2018, 8(23): 1800709. DOI: 10.1002/aenm.201800709.
|
24 |
ZHANG B, LUO C, DENG Y Q, et al. Optimized catalytic WS2-WO3 heterostructure design for accelerated polysulfide conversion in lithium-sulfur batteries[J]. Advanced Energy Materials, 2020, 10(15): DOI: 10.1002/aenm.202000091.
|
25 |
ZHANG J P, XI W, YU F, et al. Constructing MoS2-SnS heterostructures on N-doped carbon nanosheets for enhanced catalytic conversion of polysulfides in lithium-sulfur batteries[J]. Chemical Engineering Journal, 2023, 475: DOI: 10.1016/j.cej.2023.146009.
|
26 |
YE C, JIAO Y, JIN H Y, et al. 2D MoN-VN heterostructure to regulate polysulfides for highly efficient lithium-sulfur batteries[J]. Angewandte Chemie International Edition, 2018, 57(51): 16703-16707. DOI: 10.1002/anie.201810579.
|
27 |
ZHAO Z X, YI Z L, DUAN Y R, et al. Regulating the d-p band center of FeP/Fe2P heterostructure host with built-in electric field enabled efficient bidirectional electrocatalyst toward advanced lithium-sulfur batteries[J]. Chemical Engineering Journal, 2023, 463: DOI: 10.1016/j.cej.2023.142397.
|
28 |
WANG A W, DU M, NI J X, et al. Enhanced and synergistic catalytic activation by photoexcitation driven S-scheme heterojunction hydrogel interface electric field[J]. Nature Communications, 2023, 14(1): 6733. DOI: 10.1038/s41467-023-42542-6.
|
29 |
JU L, MA Y D, TAN X, et al. Controllable electrocatalytic to photocatalytic conversion in ferroelectric heterostructures[J]. Journal of the American Chemical Society, 2023, 145(48): 26393-26402. DOI: 10.1021/jacs.3c10271.
|
30 |
WEN W, WU J M, JIANG Y Z, et al. Pseudocapacitance-enhanced Li-ion microbatteries derived by a TiN@TiO2 nanowire anode[J]. Chem, 2017, 2(3): 404-416. DOI: 10.1016/j.chempr.2017.01.004.
|
31 |
LIU S D, MENG X W, WANG Z Z, et al. Enhancing microwave absorption by constructing core/shell TiN@TiO2 heterostructures through post-oxidation annealing[J]. Materials Letters, 2019, 257: 126677. DOI: 10.1016/j.matlet.2019.126677.
|
32 |
LI B Q, ZHAO W, YANG Z, et al. A carbon-doped anatase TiO2-Based flexible silicon anode with high-performance and stability for flexible lithium-ion battery[J]. Journal of Power Sources, 2020, 466: 228339. DOI: 10.1016/j.jpowsour.2020.228339.
|
33 |
MURANO A, FUNABIKI H, SEKIYA T. Change in electronic state of nitrogen in oxidized titanium nitride[J]. Journal of Physics and Chemistry of Solids, 2022, 168: DOI: 10.1016/j.jpcs.2022.110817.
|
34 |
YANG J, WANG C D, JU H X, et al. Integrated quasiplane heteronanostructures of MoSe2/Bi2Se3 hexagonal nanosheets: Synergetic electrocatalytic water splitting and enhanced supercapacitor performance[J]. Advanced Functional Materials, 2017, 27(48): DOI: 10.1002/adfm.201703864.
|
35 |
ZHUANG L Z, GE L, YANG Y S, et al. Ultrathin iron-cobalt oxide nanosheets with abundant oxygen vacancies for the oxygen evolution reaction[J]. Advanced Materials, 2017, 29(17): DOI: 10.1002/adma.201606793.
|
36 |
LI X B, XIONG J, GAO X M, et al. Novel BP/BiOBr S-scheme nano-heterojunction for enhanced visible-light photocatalytic tetracycline removal and oxygen evolution activity[J]. Journal of Hazardous Materials, 2020, 387: DOI: 10.1016/j.jhazmat.2019.121690.
|
37 |
LU D Z, WANG X Y, HU Y J, et al. Expediting stepwise sulfur conversion via spontaneous built-in electric field and binary sulfiphilic effect of conductive NbB2-MXene heterostructure in lithium-sulfur batteries[J]. Advanced Functional Materials, 2023, 33(15): DOI: 10.1002/adfm.202212689.
|
38 |
NGUYEN T T, BALAMURUGAN J, GO H W, et al. Dual-functional Co5.47N/Fe3N heterostructure interconnected 3D N-doped carbon nanotube-graphene hybrids for accelerating polysulfide conversion in Li-S batteries[J]. Chemical Engineering Journal, 2022, 427: DOI: 10.1016/j.cej.2021.131774.
|
39 |
FAN F Y, CARTER W C, CHIANG Y M. Mechanism and kinetics of Li2S precipitation in lithium-sulfur batteries[J]. Advanced Materials, 2015, 27(35): 5203-5209. DOI: 10.1002/adma.201501559.
|
40 |
ZHOU L, DANILOV D L, QIAO F, et al. Sulfur reduction reaction in lithium-sulfur batteries: Mechanisms, catalysts, and characterization[J]. Advanced Energy Materials, 2022, 12(44): DOI: 10.1002/aenm.202202094.
|
41 |
XUE C J, ZHANG Y H, NIE Z H, et al. High pseudocapacitive lithium-storage behaviors of amorphous titanium oxides with titanium vacancies and open channels[J]. Electrochimica Acta, 2023, 444: DOI: 10.1016/j.electacta.2023.142021.
|
42 |
ZHANG Y H, NIE Z H, DU C Q, et al. Ultrahigh lithiation dynamics of Li4Ti5O12 as an anode material with open diffusion channels induced by chemical presodiation[J]. Rare Metals, 2023, 42(2): 471-483. DOI: 10.1007/s12598-022-02135-6.
|