1 |
XU J, MEI X S, WANG X, et al. A relative state of health estimation method based on wavelet analysis for lithium-ion battery cells[J]. IEEE Transactions on Industrial Electronics, 2021, 68(8): 6973-6981. DOI: 10.1109/TIE.2020.3001836.
|
2 |
ROUHOLAMINI M, WANG C S, NEHRIR H, et al. A review of modeling, management, and applications of grid-connected Li-ion battery storage systems[J]. IEEE Transactions on Smart Grid, 2022, 13(6): 4505-4524. DOI: 10.1109/TSG.2022.3188598.
|
3 |
熊庆, 邸振国, 汲胜昌, 锂离子电池健康状态估计及寿命预测研究进展综述[J], 高电压技术, 2024, 50(3): 1182-1195. DOI: 10.13336/j.1003-6520.hve.20221843.
|
|
XIONG Q, DI Z G, JI S C, Review on health state estimation and life prediction of lithium-ion batteries[J], High Voltage Engineering, 2024, 50(3): 1182-1195. DOI: 10.13336/j.1003-6520.hve.20221843.
|
4 |
BAO Z Y, JIANG J H, ZHU C X, et al. A new hybrid neural network method for state-of-health estimation of lithium-ion battery[J]. Energies, 2022, 15(12): 4399. DOI: 10.3390/en15124399.
|
5 |
高仁璟, 吕治强, 赵帅, 等. 基于电化学模型的锂离子电池健康状态估算[J]. 北京理工大学学报, 2022, 42(8): 791-797. DOI: 10.15918/j.tbit1001-0645.2021.310.
|
|
GAO R J, LYU Z Q, ZHAO S, et al. Health state estimation of Li-ion batteries based on electrochemical model[J]. Transactions of Beijing Institute of Technology, 2022, 42(8): 791-797. DOI: 10. 15918/j.tbit1001-0645.2021.310.
|
6 |
颜湘武, 邓浩然, 郭琪, 等. 基于自适应无迹卡尔曼滤波的动力电池健康状态检测及梯次利用研究[J]. 电工技术学报, 2019, 34(18): 3937-3948. DOI: 10.19595/j.cnki.1000-6753.tces.171452.
|
|
YAN X W, DENG H R, GUO Q, et al. Study on the state of health detection of power batteries based on adaptive unscented Kalman filters and the battery echelon utilization[J]. Transactions of China Electrotechnical Society, 2019, 34(18): 3937-3948. DOI: 10.19595/j.cnki.1000-6753.tces.171452.
|
7 |
LI C, ZHANG H H, DING P, et al. Deep feature extraction in lifetime prognostics of lithium-ion batteries: Advances, challenges and perspectives[J]. Renewable and Sustainable Energy Reviews, 2023, 184: 113576. DOI: 10.1016/j.rser.2023.113576.
|
8 |
戴彦文, 于艾清. 基于健康特征参数的CNN-LSTM&GRU组合锂电池SOH估计[J]. 储能科学与技术, 2022, 11(5): 1641-1649.
|
|
DAI Y W, YU A Q. Combined CNN-LSTM and GRU based health feature parameters for lithium-ion batteries SOH estimation[J]. Energy Storage Science and Technology, 2022, 11(5): 1641-1649.
|
9 |
LI X Y, YUAN C G, LI X H, et al. State of health estimation for Li-ion battery using incremental capacity analysis and Gaussian process regression[J]. Energy, 2020, 190: 116467. DOI: 10.1016/j.energy.2019.116467.
|
10 |
王琛, 闵永军. 基于容量增量曲线与GWO-GPR的锂离子电池SOH估计[J]. 储能科学与技术, 2023, 12(11): 3508-3518.
|
|
WANG C, MIN Y J. SOH estimation of lithium-ion batteries based on capacity increment curve and GWO-GPR[J]. Energy Storage Science and Technology, 2023, 12(11): 3508-3518.
|
11 |
JIA J F, YUAN S F, SHI Y H, et al. Improved sparrow search algorithm optimization deep extreme learning machine for lithium-ion battery state-of-health prediction[J]. iScience, 2022, 25(4): 103988. DOI: 10.1016/j.isci.2022.103988.
|
12 |
ZHU J G, WANG Y X, HUANG Y, et al. Data-driven capacity estimation of commercial lithium-ion batteries from voltage relaxation[J]. Nature Communications, 2022, 13(1): 2261. DOI: 10.1038/s41467-022-29837-w.
|
13 |
LIN M Q, WU D G, MENG J H, et al. A multi-feature-based multi-model fusion method for state of health estimation of lithium-ion batteries[J]. Journal of Power Sources, 2022, 518, 230774. DOI: 10.1016/j.jpowsour.2021.230774.
|
14 |
BAO Z Y, NIE J H, LIN H P, et al. A global-local context embedding learning based sequence-free framework for state of health estimation of lithium-ion battery[J]. Energy, 2023, 282: 128306. DOI: 10.1016/j.energy.2023.128306.
|
15 |
JIANG Y Y, CHEN Y, YANG F F, et al. State of health estimation of lithium-ion battery with automatic feature extraction and self-attention learning mechanism[J]. Journal of Power Sources, 2023, 556: 232466. DOI: 10.1016/j.jpowsour.2022.232466.
|
16 |
李超然, 肖飞, 樊亚翔, 等. 基于卷积神经网络的锂离子电池SOH估算[J]. 电工技术学报, 2020, 35(19): 4106-4119. DOI: 10.19595/j.cnki.1000-6753.tces.191617.
|
|
LI C R, XIAO F, FAN Y X, et al. An approach to lithium-ion battery SOH estimation based on convolutional neural network[J]. Transactions of China Electrotechnical Society, 2020, 35(19): 4106-4119. DOI: 10.19595/j.cnki.1000-6753.tces.191617.
|
17 |
FU P Y, CHU L, LI J H, et al. State of health prediction of lithium-ion battery based on deep dilated convolution[J]. Sensors, 2022, 22(23): 9435. DOI: 10.3390/s22239435.
|
18 |
SUN S, SUN J Z, WANG Z L, et al. Prediction of battery SOH by CNN-BiLSTM network fused with attention mechanism[J]. Energies, 2022, 15(12): 4428. DOI: 10.3390/en15124428.
|
19 |
LI L, LI Y J, MAO R Z, et al. Remaining useful life prediction for lithium-ion batteries with a hybrid model based on TCN-GRU-DNN and dual attention mechanism[J]. IEEE Transactions on Transportation Electrification, 2023, 9(3): 4726-4740. DOI: 10.1109/TTE.2023.3247614.
|
20 |
毛百海, 覃吴, 肖显斌, 等. 基于LSTM&GRU-Attention多联合模型的锂离子电池SOH估计[J]. 储能科学与技术, 2023, 12(11): 3519-3527.
|
|
MAO B H, QIN W, XIAO X B, et al. SOH estimation of lithium-ion batteries based on LSTM & GRU-attention multijoint model[J]. Energy Storage Science and Technology, 2023, 12(11): 3519-3527.
|
21 |
LIN M Q, WU J, MENG J H, et al. State of health estimation with attentional long short-term memory network for lithium-ion batteries[J]. Energy, 2023, 268: 126706. DOI: 10.1016/j.energy. 2023.126706.
|
22 |
SAHA B, GOEBEL K. Battery data set[DB]. NASA AMES prognostics data repository, 2007.
|
23 |
XING Y J, MA E W M, TSUI K L, et al. An ensemble model for predicting the remaining useful performance of lithium-ion batteries[J]. Microelectronics Reliability, 2013, 53(6): 811-820. DOI: 10.1016/j.microrel.2012.12.003.
|
24 |
LIU B L, XU J L, XIA W. State-of-health estimation for lithium-ion battery based on an attention-based CNN-GRU model with reconstructed feature series[J]. International Journal of Energy Research, 2023, 2023: 8569161. DOI: 10.1155/2023/8569161.
|
25 |
YU F, KOLTUN V. Multi-scale context aggregation by dilated convolutions[EB/OL]. 2015: 1511. 07122.[2024-02-03]. https://arxiv.org/abs/1511.07122v3
|
26 |
WANG F J, ZHAI Z, LIU B C, et al. Open access dataset, code library and benchmarking deep learning approaches for state-of-health estimation of lithium-ion batteries[J]. Journal of Energy Storage, 2024, 77: 109884. DOI: 10.1016/j.est.2023.109884.
|
27 |
WANG Q L, WU B G, ZHU P F, et al. ECA-net: Efficient channel attention for deep convolutional neural networks[C]// 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2020: 11531-11539. DOI: 10.1109/CVPR42600. 2020.01155.
|
28 |
HU J, SHEN L, ALBANIE S, et al. Squeeze-and-excitation networks[DB/OL]. 2017[2023-01-05]. https://doi.org/10.48550/arXiv.1709.01507.
|
29 |
FU S Y, TAO S Y, FAN H T, et al. Data-driven capacity estimation for lithium-ion batteries with feature matching based transfer learning method[J]. Applied Energy, 2024, 353: 121991. DOI: 10.1016/j.apenergy.2023.121991.
|
30 |
RUAN H K, WEI Z B, SHANG W T, et al. Artificial Intelligence-based health diagnostic of lithium-ion battery leveraging transient stage of constant current and constant voltage charging[J]. Applied Energy, 2023, 336: 120751. DOI: 10.1016/j.apenergy. 2023.120751.
|
31 |
PAN R, LIU T S, HUANG W, et al. State of health estimation for lithium-ion batteries based on two-stage features extraction and gradient boosting decision tree[J]. Energy, 2023, 285: 129460. DOI: 10.1016/j.energy.2023.129460.
|
32 |
WANG F J, ZHAO Z B, ZHAI Z, et al. Explainability-driven model improvement for SOH estimation of lithium-ion battery[J]. Reliability Engineering & System Safety, 2023, 232: 109046. DOI: 10.1016/j.ress.2022.109046.
|