储能科学与技术 ›› 2025, Vol. 14 ›› Issue (2): 728-736.doi: 10.19799/j.cnki.2095-4239.2024.0717

• 储能系统与工程 • 上一篇    下一篇

基于改进灰狼算法优化GPR模型的动力电池RUL预测方法

吴旭志1(), 郭健2   

  1. 1.陕西国防工业职业技术学院,陕西 西安 710300
    2.长安大学,陕西 西安 710064
  • 收稿日期:2024-08-05 修回日期:2024-08-23 出版日期:2025-02-28 发布日期:2025-03-18
  • 通讯作者: 吴旭志 E-mail:845554711@qq.com
  • 作者简介:吴旭志(1993—),男,硕士,助教,研究方向为智能制造与电池管理系统,E-mail:845554711@qq.com

An approach for remaining useful life prediction of power battery with improved grey wolf optimized GPR model

Xuzhi WU1(), Jian GUO2   

  1. 1.Shaanxi Institute of Technology, Xi’an 710300, Shaanxi, China
    2.Chang’an University, Xi’an 710064, Shaanxi, China
  • Received:2024-08-05 Revised:2024-08-23 Online:2025-02-28 Published:2025-03-18
  • Contact: Xuzhi WU E-mail:845554711@qq.com

摘要:

可靠准确地预测动力电池剩余使用寿命(remaining useful life,RUL)可以缓解用户对里程和安全的焦虑。为了提升RUL预测精度,基于NASA数据集,本工作提出了一种改进的灰狼算法来优化高斯过程回归(Gaussian process regression, GPR)模型。本工作从以下三方面开展研究。首先,基于电池的充放电数据,提取了五种间接健康因子,包括充电电压饱和间隔(CVSI,HI1)、充电峰值温度间隔(CPTI,HI2)、恒流充电间隔(CCCI,HI3)、放电峰值温度区间(DPTI,HI4)和放电恒流间隔(DCCI,HI5),并采用灰色关联方法分析健康因子和容量的相关性。其次,本工作选取GPR方法作为动力电池RUL预测模型,针对传统模型参数辨识已陷入局部最优问题,提出了基于差分算法改进的灰狼算法,提升模型预测能力。最后,利用NASA数据集对本工作所提方法进行验证。实验结果表明,所提算法预测RUL误差控制在2%以内。

关键词: 动力电池, 剩余使用寿命, 高斯过程回归, 灰狼算法

Abstract:

Accurate and reliable prediction of remaining useful life (RUL) of power batteries is crucial for mitigating user concerns regarding mileage and safety. To improve the accuracy of RUL prediction, we propose an improved grey wolf algorithm to optimize the GPR model, based on the NASA dataset. This study focuses on three aspects. First, five indirect health factors were extracted based on battery charging and discharging data including charging voltage saturation interval (CVSI, HI1), charging peak temperature interval (CPTI, HI2), constant current charging interval (CCCI, HI3), discharging peak temperature interval (DPTI, HI4), and discharging constant current interval (DCCI, HI5). The grey correlation method was used to analyze the correlation between health factors and capacity. Second, GPR method was selected as the RUL prediction model for power batteries. In response to the problem of traditional model parameter identification falling into local optima, an improved grey wolf algorithm based on a differential algorithm is proposed to enhance the model's prediction ability. Finally, the proposed method was validated using the NASA dataset. The experimental results showed that the proposed algorithm can control the RUL prediction error within 2%.

Key words: power battery, remaining useful life, Gaussian process regression, grey wolf optimization algorithm

中图分类号: