储能科学与技术 ›› 2025, Vol. 14 ›› Issue (2): 717-727.doi: 10.19799/j.cnki.2095-4239.2024.0804

• 储能系统与工程 • 上一篇    下一篇

锂电池湿式冷却系统数值模拟及性能分析

黎家玮1,2(), 刘祯1,2()   

  1. 1.湖北文理学院纯电动汽车动力系统设计与测试湖北省重点实验室
    2.湖北文理学院汽车与交通工程学院,湖北 襄阳 441053
  • 收稿日期:2024-08-30 修回日期:2024-09-12 出版日期:2025-02-28 发布日期:2025-03-18
  • 通讯作者: 刘祯 E-mail:1751592214@qq.com;liuzhen@hbuas.edu.cn
  • 作者简介:黎家玮(2000—),男,硕士研究生,研究方向为新能源汽车热管理,E-mail:1751592214@qq.com
  • 基金资助:
    湖北省自然科学基金创新发展联合基金项目(2022CFD083);“新能源汽车与智慧交通”湖北省优势特色学科群(XKTD012022)

Numerical simulation and performance analysis of a wet cooling system for lithium-ion batteries

Jiawei LI1,2(), Zhen LIU1,2()   

  1. 1.Hubei Key Laboratory of Power System Design and Test for Electrical Vehicle, Hubei University of Arts and Science
    2.School of Automotive and Traffic Engineering, Hubei University of Arts and Science, Xiangyang 441053, Hubei, China
  • Received:2024-08-30 Revised:2024-09-12 Online:2025-02-28 Published:2025-03-18
  • Contact: Zhen LIU E-mail:1751592214@qq.com;liuzhen@hbuas.edu.cn

摘要:

电动汽车电池热管理系统对电池的冷却起关键作用,本研究提出了一种锂电池湿式冷却系统,该湿冷系统分为两个冷却阶段,第一阶段通过喷雾蒸发对空气预冷,第二阶段通过喷雾使电池表面形成液膜,空气流动使液膜蒸发进而对电池冷却。为了研究各因素对喷雾蒸发及液膜蒸发的影响规律,通过Fluent软件对湿冷系统进行计算流体力学分析,分别探究了喷雾质量流量、风速、空气湿度、液滴粒径、气压对两个阶段冷却性能的影响。仿真结果表明:喷雾质量流量、风速对两个阶段的影响规律不同,而空气湿度、液滴粒径、气压对两个阶段的影响规律相同;喷雾质量流量越大、风速越小对第一阶段空气预冷更有利,湿度越低、粒径越小、气压越低对两个阶段都有利;同时喷嘴的位置对喷雾蒸发有影响,适当地增加喷嘴与电池的距离更有利于喷雾对空气的预冷。为了使两个阶段都具备更优的冷却条件,最后对喷雾质量流量、风速进行分阶段改进,改进后以更小的风速及更少的喷雾质量流量提高了第一阶段对空气的预冷能力,在第二阶段为电池提供更大的风速及更均匀的液膜,使电池的平均温度降低了1.9 ℃、最大温差降低了1.7 ℃。

关键词: 锂电池, 湿式冷却系统, 喷雾冷却影响因素, 分阶段冷却

Abstract:

The thermal management system of electric vehicle batteries is crucial in cooling the battery. In this study, we propose a wet cooling system for lithium-ion batteries. The wet cooling system consists of two cooling stages. The first stage involves precooling the air via spray evaporation, and the second stage involves the formation of a liquid film on the battery surface via spraying. The liquid films evaporate under air flow which then cools the battery. To study the influence of various factors on spray evaporation and liquid-film evaporation, computational fluid dynamics analysis of the wet cooling system was carried out using Fluent software. The effects of spray mass flow, wind speed, air humidity, droplet size, and air pressure on the cooling performance of both stages were explored. The simulation results show that the effects of spray mass flow rate and wind speed are different for both stages, whereas the effects of air humidity, droplet size, and air pressure on both stages are identical. The effectiveness of air precooling in the first stage increases with higher spray mass flow rates and decreases with increasing wind speeds. Lower humidity, smaller particle size, and reduced air pressure favor both cooling stages. The position of the nozzle has an impact on the spray evaporation, and an adequate distance between the nozzle and the battery is more effective for the air precooling of the spray. To provide better cooling conditions for both stages, the spray mass flow rate and wind speed were improved in stages. After the improvement, the air precooling capacity of the first stage was augmented through a reduction in both wind velocity and spray mass flow rate. In the second stage, the battery was subjected to increased wind velocity and a more uniform liquid-film distribution. This resulted in a 1.9 ℃ decrease in the battery's average temperature and a 1.7 ℃ reduction in its maximum temperature differential.

Key words: lithium battery, wet cooling system, spray cooling influencing factors, phased cooling

中图分类号: