储能科学与技术 ›› 2025, Vol. 14 ›› Issue (3): 1270-1285.doi: 10.19799/j.cnki.2095-4239.2024.0859

• 储能新锐科学家专刊 • 上一篇    下一篇

百千瓦级二氧化碳储能系统向心透平设计与结构参数优化

沈代兵1,2(), 郝佳豪1,2, 宋衍昌1,2, 杨俊玲1, 张振涛1,3,4, 越云凯1,3,4()   

  1. 1.中国科学院理化技术研究所低温科学与技术重点实验室,北京 100190
    2.中国科学院大学,北京 100049
    3.长沙博睿鼎能动力科技有限公司,湖南 长沙 410205
    4.河北省储能产业技术 研究院,河北 石家庄 050051
  • 收稿日期:2024-09-12 修回日期:2024-10-25 出版日期:2025-03-28 发布日期:2025-04-28
  • 通讯作者: 越云凯 E-mail:shendaibing22@mails.ucas.ac.cn;yueyunkai@mail.ipc.ac.cn
  • 作者简介:沈代兵(2000—),男,硕士研究生,研究方向为二氧化碳储能系统透平膨胀机,E-mail:shendaibing22@mails.ucas.ac.cn
  • 基金资助:
    国家自然科学基金(52206032);中国科学院稳定支持基础研究领域青年团队计划(YSBR-043)

Centripetal turbine design and structural parameter optimization for hundred-kilowatt-class carbon dioxide energy storage system

Daibing SHEN1,2(), Jiahao HAO1,2, Yanchang SONG1,2, Junling YANG1, Zhentao ZHANG1,3,4, Yunkai YUE1,3,4()   

  1. 1.State Key Laboratory of Cryogenic Science and Technology, Technical Institute of Physical and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
    2.University of Chinese Academy of Sciences, Beijing 100049, China
    3.Changsha Borui Energy Technology Co. , Ltd. , Changsha 410205, Hunan, China
    4.Research Institute of Energy Storage Industrial Technology of Hebei Province, Shijiazhuang 050051, Hebei, China
  • Received:2024-09-12 Revised:2024-10-25 Online:2025-03-28 Published:2025-04-28
  • Contact: Yunkai YUE E-mail:shendaibing22@mails.ucas.ac.cn;yueyunkai@mail.ipc.ac.cn

摘要:

透平膨胀机是二氧化碳储能系统的关键装备,透平叶轮的结构参数优化有利于更好地提高透平膨胀机的整体性能。本文以某百千瓦级二氧化碳储能系统向心透平为研究对象,首先通过气动设计得到该二氧化碳透平的主要结构参数,然后基于Numeca开展流场仿真,分析了叶轮叶片数、叶轮入口角和叶轮出口角对流动特性的影响规律,进一步研究了叶顶间隙内的泄漏流和损失,最后探究了非定常流动特性下透平性能的变化规律。结果表明:随着叶轮叶片数的增加,叶轮流道中的低马赫数区域占比先降低后增加;叶轮入口角和叶轮出口角显著影响透平内流动分离区域和涡面积分布,优化叶轮角后的透平等熵效率达83.65%,较初始设计提高了0.75%;透平等熵效率随叶顶间隙的增加而减小,且近似呈线性变化;喷嘴尾迹流会引起叶轮内的非定常流动,且透平等熵效率较定常工况时下降了0.57%。

关键词: 二氧化碳储能, 透平膨胀机, 结构参数, 叶顶间隙泄漏, 非定常流动

Abstract:

The turbine expander is a key component in a carbon dioxide (CO2) energy storage system. Optimizing the structural parameters of the turbine impeller improves overall expander performance. This study investigates a centripetal turbine in a hundred‐kilowatt-class CO2 energy storage system. Initially, the main structural parameters of the CO2 turbine are defined through aerodynamic design. A subsequent flow field simulation using Numeca software evaluates the effects of impeller blade number, inlet angle, and outlet angle on flow characteristics. In addition, leakage flow and losses in the impeller top clearance are examined. Finally, turbine performance under unsteady flow conditions is assessed. The results demonstrate that increasing the impeller blade number causes the percentage of the low Mach number region in the impeller channel to decrease and then increase. Both the impeller inlet and outlet angles significantly affect the flow separation region and vortex distribution. After optimization, the turbine's isentropic efficiency reaches 83.65%, an increase of 0.75% relative to the initial design. Furthermore, the isentropic efficiency decreases approximately linearly with greater impeller top clearance, and nozzle wake flow induces unsteady conditions, reducing efficiency by 0.57% compared to steady flow.

Key words: carbon dioxide energy storage, turbine expander, structural parameter, impeller top clearance leakage, unsteady flow

中图分类号: