储能科学与技术 ›› 2025, Vol. 14 ›› Issue (3): 1270-1285.doi: 10.19799/j.cnki.2095-4239.2024.0859
沈代兵1,2(), 郝佳豪1,2, 宋衍昌1,2, 杨俊玲1, 张振涛1,3,4, 越云凯1,3,4(
)
收稿日期:
2024-09-12
修回日期:
2024-10-25
出版日期:
2025-03-28
发布日期:
2025-04-28
通讯作者:
越云凯
E-mail:shendaibing22@mails.ucas.ac.cn;yueyunkai@mail.ipc.ac.cn
作者简介:
沈代兵(2000—),男,硕士研究生,研究方向为二氧化碳储能系统透平膨胀机,E-mail:shendaibing22@mails.ucas.ac.cn;
基金资助:
Daibing SHEN1,2(), Jiahao HAO1,2, Yanchang SONG1,2, Junling YANG1, Zhentao ZHANG1,3,4, Yunkai YUE1,3,4(
)
Received:
2024-09-12
Revised:
2024-10-25
Online:
2025-03-28
Published:
2025-04-28
Contact:
Yunkai YUE
E-mail:shendaibing22@mails.ucas.ac.cn;yueyunkai@mail.ipc.ac.cn
摘要:
透平膨胀机是二氧化碳储能系统的关键装备,透平叶轮的结构参数优化有利于更好地提高透平膨胀机的整体性能。本文以某百千瓦级二氧化碳储能系统向心透平为研究对象,首先通过气动设计得到该二氧化碳透平的主要结构参数,然后基于Numeca开展流场仿真,分析了叶轮叶片数、叶轮入口角和叶轮出口角对流动特性的影响规律,进一步研究了叶顶间隙内的泄漏流和损失,最后探究了非定常流动特性下透平性能的变化规律。结果表明:随着叶轮叶片数的增加,叶轮流道中的低马赫数区域占比先降低后增加;叶轮入口角和叶轮出口角显著影响透平内流动分离区域和涡面积分布,优化叶轮角后的透平等熵效率达83.65%,较初始设计提高了0.75%;透平等熵效率随叶顶间隙的增加而减小,且近似呈线性变化;喷嘴尾迹流会引起叶轮内的非定常流动,且透平等熵效率较定常工况时下降了0.57%。
中图分类号:
沈代兵, 郝佳豪, 宋衍昌, 杨俊玲, 张振涛, 越云凯. 百千瓦级二氧化碳储能系统向心透平设计与结构参数优化[J]. 储能科学与技术, 2025, 14(3): 1270-1285.
Daibing SHEN, Jiahao HAO, Yanchang SONG, Junling YANG, Zhentao ZHANG, Yunkai YUE. Centripetal turbine design and structural parameter optimization for hundred-kilowatt-class carbon dioxide energy storage system[J]. Energy Storage Science and Technology, 2025, 14(3): 1270-1285.
1 | 李祎然, 李文, 常学煜, 等. 基于变工质模化方法的超临界CO2储能透平膨胀机相似特性分析[J]. 储能科学与技术, 2021, 10(5): 1815-1823. |
LI Y R, LI W, CHANG X Y, et al. Modeling of similar characteristics of turbo-expander in supercritical CO2 energy storage based on different working fluids[J]. Energy Storage Science and Technology, 2021, 10(5): 1815-1823. | |
2 | WANG M K, ZHAO P, WU Y, et al. Performance analysis of a novel energy storage system based on liquid carbon dioxide[J]. Applied Thermal Engineering, 2015, 91: 812-823. DOI:10.1016/j.applthermaleng.2015.08.081. |
3 | LIU H, HE Q, BORGIA A, et al. Thermodynamic analysis of a compressed carbon dioxide energy storage system using two saline aquifers at different depths as storage reservoirs[J]. Energy Conversion and Management, 2016, 127: 149-159. DOI:10.1016/j.enconman.2016.08.096. |
4 | LI F H, XING L L, SU W, et al. An idea to construct integrated energy systems of data center by combining CO2 heat pump and compressed CO2 energy storage[J]. Journal of Energy Storage, 2024, 75: 109581. DOI:10.1016/j.est.2023.109581. |
5 | LIU Z Y, GUAN H W, SHAO J W, et al. Thermodynamic and advanced exergy analysis of a trans-critical CO2 energy storage system integrated with heat supply and solar energy[J]. Energy, 2024, 302: 131507. DOI:10.1016/j.energy.2024.131507. |
6 | 孙冠珂, 李文, 张雪辉, 等. 向心涡轮进气结构的气动性能及损失机理[J]. 航空动力学报, 2015, 30(8): 1926-1935. DOI: 10.13224/j.cnki.jasp.2015.08.016. |
SUN G K, LI W, ZHANG X H, et al. Aerodynamic performance and losses mechanism of radial turbine intake components[J]. Journal of Aerospace Power, 2015, 30(8): 1926-1935. DOI: 10.13224/j.cnki.jasp.2015.08.016. | |
7 | ZHOU A Z, SONG J, LI X S, et al. Aerodynamic design and numerical analysis of a radial inflow turbine for the supercritical carbon dioxide Brayton cycle[J]. Applied Thermal Engineering, 2018, 132: 245-255. DOI:10.1016/j.applthermaleng.2017.12.106. |
8 | LV G C, YANG J G, SHAO W Y, et al. Aerodynamic design optimization of radial-inflow turbine in supercritical CO2 cycles using a one-dimensional model[J]. Energy Conversion and Management, 2018, 165: 827-839. DOI:10.1016/j.enconman. 2018.03.005. |
9 | UUSITALO A, TURUNEN-SAARESTI T, GRÖNMAN A. Design and loss analysis of radial turbines for supercritical CO2 Brayton cycles[J]. Energy, 2021, 230: 120878. DOI:10.1016/j.energy. 2021.120878. |
10 | ZHOU K H, WANG J F, XIA J X, et al. Design and performance analysis of a supercritical CO2 radial inflow turbine[J]. Applied Thermal Engineering, 2020, 167: 114757. DOI:10.1016/j.applthermaleng.2019.114757. |
11 | 施东波, 刘天源, 谢永慧, 等. 基于Gauss过程回归的超临界二氧化碳透平设计-优化方法[J]. 动力工程学报, 2019, 39(11): 876-883, 892. |
SHI D B, LIU T Y, XIE Y H, et al. Design and optimization of an S-CO2 turbine based on Gauss process regression[J]. Journal of Chinese Society of Power Engineering, 2019, 39(11): 876-883, 892. | |
12 | 郝佳豪, 越云凯, 张家俊, 等. 二氧化碳储能技术研究现状与发展前景[J]. 储能科学与技术, 2022, 11(10): 3285-3296. DOI: 10.19799/j.cnki.2095-4239.2022.0199. |
HAO J H, YUE Y K, ZHANG J J, et al. Research status and development prospect of carbon dioxide energy-storage technology[J]. Energy Storage Science and Technology, 2022, 11(10): 3285-3296. DOI: 10.19799/j.cnki.2095-4239.2022.0199. | |
13 | 张家俊, 李晓琼, 张振涛, 等. 压缩二氧化碳储能系统研究进展[J]. 储能科学与技术, 2023, 12(6): 1928-1945. DOI: 10.19799/j.cnki.2095-4239.2023.0005. |
ZHANG J J, LI X Q, ZHANG Z T, et al. Research progress of compressed carbon dioxide energy storage system[J]. Energy Storage Science and Technology, 2023, 12(6): 1928-1945. DOI: 10.19799/j.cnki.2095-4239.2023.0005. | |
14 | 赵攀, 温玉聪, 娄聚伟, 等. 超临界二氧化碳向心透平设计与热流固耦合研究[J]. 西安交通大学学报, 2022, 56(11): 83-94. |
ZHAO P, WEN Y C, LOU J W, et al. Design and thermal-fluid-solid coupling investigation of supercritical carbon dioxide radial inflow turbine[J]. Journal of Xi'an Jiaotong University, 2022, 56(11): 83-94. | |
15 | 奚忠. 径流透平气动设计及优化方法研究[D]. 北京: 中国科学院研究生院(工程热物理研究所), 2012. |
XI Z. Study on aerodynamic design and optimization method of radial flow turbine[D]. Beijing: Institute of Engineering Thermophysics, Chinese Academy of Sciences, 2012. | |
16 | 邢浩. 超临界二氧化碳向心透平一维优化设计及变工况性能分析[D]. 天津: 天津理工大学, 2022. DOI: 10.27360/d.cnki.gtlgy. 2022.000521. |
XING H. One-dimensional optimization design and off-design performance analysis of supercritical carbon dioxide centripetal turbine[D]. Tianjin: Tianjin University of Technology, 2022. DOI: 10.27360/d.cnki.gtlgy.2022.000521. | |
17 | YU Z T, WANG C J, RONG F H, et al. Optimal coupling design for organic Rankine cycle and radial turbine rotor using CFD modeling, machine learning and genetic algorithm[J]. Energy Conversion and Management, 2023, 275: 116493. DOI:10.1016/j.enconman.2022.116493. |
18 | 孙玉伟, 陈晨, 秦天阳, 等. 高速S-CO2向心透平几何参数优化及变工况特性分析[J]. 中国电机工程学报, 2024, 44(6): 2319-2330. |
SUN Y W, CHEN C, QIN T Y, et al. Geometric parameter optimization and off-design performance analysis of a high-speed S-CO2 radial-inflow turbine[J]. Proceedings of the CSEE, 2024, 44(6): 2319-2330. | |
19 | 王巧珍. 7.5MW超临界二氧化碳向心透平气动设计及性能分析[D]. 北京: 华北电力大学, 2021. DOI: 10.27139/d.cnki.ghbdu. 2021.000328. |
WANG Q Z. Aerodynamic design and performance analysis of 7.5MW supercritical carbon dioxide centripetal turbine[D]. Beijing: North China Electric Power University, 2021. DOI: 10.27139/d.cnki.ghbdu.2021.000328. | |
20 | 张鹍. 有机工质向心透平设计及全工况性能研究[D]. 天津: 天津大学, 2022. DOI: 10.27356/d.cnki.gtjdu.2022.000981. |
ZHANG K. Design of centripetal turbine with organic working fluid and study on its performance under all working conditions[D]. Tianjin: Tianjin University, 2022. DOI: 10.27356/d.cnki.gtjdu. 2022.000981. | |
21 | 陈世雄. 5kW级电涡流制动氦透平膨胀机设计研究[D]. 合肥: 中国科学技术大学, 2021. DOI: 10.27517/d.cnki.gzkju.2021.002647. |
CHEN S X. Design and research of 5kW eddy current braking helium turboexpander[D]. Hefei: University of Science and Technology of China, 2021. DOI: 10.27517/d.cnki.gzkju. 2021. 002647. | |
22 | WANG Z Q, XIE B Q, XIA X X, et al. Entropy production analysis of a radial inflow turbine with variable inlet guide vane for ORC application[J]. Energy, 2023, 265: 126313. DOI:10.1016/j.energy. 2022.126313. |
23 | 王春阳. 70MW级超临界二氧化碳闭式布雷顿循环向心透平设计分析[D]. 哈尔滨: 哈尔滨工业大学, 2020. DOI: 10.27061/d.cnki.ghgdu.2020.000039. |
WANG C Y. Design and analysis of 70MW supercritical carbon dioxide closed Brayton cycle centripetal turbine[D]. Harbin: Harbin Institute of Technology, 2020. DOI: 10.27061/d.cnki.ghgdu.2020.000039. | |
24 | LI B, XIE H P, SUN L C, et al. Optimization design of radial inflow turbine combined with mean-line model and CFD analysis for geothermal power generation[J]. Energy, 2024, 291: 130452. DOI:10.1016/j.energy.2024.130452. |
25 | 邓兰, 左咪, 闫起源, 等. 低温地热源有机朗肯循环系统匹配向心透平数值分析及优化[J]. 机械科学与技术, 2018, 37(10): 1537-1543. DOI: 10.13433/j.cnki.1003-8728.20180060. |
DENG L, ZUO M, YAN Q Y, et al. Numerical analysis and optimization of radial inflow turbine for organic Rankine cycle system of low-temperature geothermal power[J]. Mechanical Science and Technology for Aerospace Engineering, 2018, 37(10): 1537-1543. DOI: 10.13433/j.cnki.1003-8728.20180060. | |
26 | PERSKY R, SAURET E. Loss models for on and off-design performance of radial inflow turbomachinery[J]. Applied Thermal Engineering, 2019, 150: 1066-1077. DOI:10.1016/j.applthermaleng. 2019.01.042. |
27 | YAO Y B, FANG S, ZHU S L, et al. Optimal design and tip leakage flow characteristics analysis of radial inflow turbine used in organic Rankine and vapor compression refrigeration system[J]. Energy, 2024, 301: 131668. DOI:10.1016/j.energy. 2024. 131668. |
28 | 霍东晨, 马国骏, 宋义康, 等. 1.5级变几何涡轮非定常流动特性研究[J]. 热能动力工程, 2021, 36(10): 85-97. DOI: 10.16146/j.cnki.rndlgc.2021.10.012. |
HUO D C, MA G J, SONG Y K, et al. Research on unsteady flow characteristics of 1.5 stage variable-geometry turbine[J]. Journal of Engineering for Thermal Energy and Power, 2021, 36(10): 85-97. DOI: 10.16146/j.cnki.rndlgc.2021.10.012. | |
29 | 刘祖煜. 压缩空气储能系统向心涡轮启动过程流动特性研究[D]. 北京: 中国科学院大学, 2021. |
LIU Z Y. Study on flow characteristics of centripetal turbine in compressed air energy storage system during start-up[D]. Beijing: University of Chinese Academy of Sciences, 2021. | |
30 | 李翔. 1.5级涡轮非定常流动研究[D]. 哈尔滨: 哈尔滨工程大学, 2010. |
LI X. Study on unsteady flow of 1.5-stage turbine[D]. Harbin: Harbin Engineering University, 2010. | |
31 | LU Z K, YANG M Y, PAN L, et al. Influence of unsteady stage-interaction on loss generation in regulated two-stage radial turbines at pulsating conditions[J]. Energy, 2024, 304: 131958. DOI:10.1016/j.energy.2024.131958. |
32 | 杨晓敏. 超临界二氧化碳离心压缩机失稳特性的数值模拟研究[D]. 天津: 天津理工大学, 2023. DOI: 10.27360/d.cnki.gtlgy. 2023. 000508. |
YANG X M. Numerical simulation study on instability characteristics of supercritical carbon dioxide centrifugal compressor[D]. Tianjin: Tianjin University of Technology, 2023. DOI: 10.27360/d.cnki.gtlgy.2023.000508. |
[1] | 张涛, 刘嘉楷, 戴天乐, 许诚. 二氧化碳电热储能与液态储能系统热力性能对比分析[J]. 储能科学与技术, 2024, 13(5): 1554-1563. |
[2] | 张家俊, 李晓琼, 张振涛, 郝佳豪, 郑平洋, 于泽, 杨俊玲, 荆亚楠, 越云凯. 压缩二氧化碳储能系统研究进展[J]. 储能科学与技术, 2023, 12(6): 1928-1945. |
[3] | 陶飞跃, 王焕然, 李瑞雄, 赵静, 葛刚强, 贺新, 陈昊. 利用环境再冷的二氧化碳储能热电联产系统及其热力学分析[J]. 储能科学与技术, 2022, 11(5): 1492-1501. |
[4] | 郝佳豪, 越云凯, 张家俊, 杨俊玲, 李晓琼, 宋衍昌, 张振涛. 二氧化碳储能技术研究现状与发展前景[J]. 储能科学与技术, 2022, 11(10): 3285-3296. |
[5] | 李乐璇, 徐玉杰, 尹钊, 郭欢, 张显荣, 陈海生, 周学志. 超临界二氧化碳储能系统㶲损特性分析[J]. 储能科学与技术, 2021, 10(5): 1824-1834. |
[6] | 李祎然, 李文, 常学煜, 左志涛, 李辉, 陈海生. 基于变工质模化方法的超临界CO2储能透平膨胀机相似特性分析[J]. 储能科学与技术, 2021, 10(5): 1815-1823. |
[7] | 刘祯, 吴华伟, 林鑫, 宋盼盼. 不同膨胀状态下涡旋膨胀机非定常流动特性分析[J]. 储能科学与技术, 2019, 8(6): 1241-1246. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||