1 |
张朝龙, 赵筛筛, 何怡刚. 基于集成经验模态分解与集成机器学习的锂离子电池剩余使用寿命预测方法[J]. 电力系统保护与控制, 2023, 51(13): 177-186. DOI: 10.19783/j.cnki.pspc.221746.
|
|
ZHANG C L, ZHAO S S, HE Y G. Remaining useful life prediction method for lithium-ion batteries based on ensemble empirical mode decomposition and ensemble machine learning[J]. Power System Protection and Control, 2023, 51(13): 177-186. DOI: 10.19783/j.cnki.pspc.221746.
|
2 |
LIU W, PLACKE T, CHAU K T. Overview of batteries and battery management for electric vehicles[J]. Energy Reports, 2022, 8: 4058-4084. DOI:10.1016/j.egyr.2022.03.016.
|
3 |
LI J, ADEWUYI K, LOTFI N, et al. A single particle model with chemical/mechanical degradation physics for lithium ion battery State of Health (SOH) estimation[J]. Applied Energy, 2018, 212: 1178-1190. DOI:10.1016/j.apenergy.2018.01.011.
|
4 |
YANG J F, CAI Y F, PAN C F, et al. A novel resistor-inductor network-based equivalent circuit model of lithium-ion batteries under constant-voltage charging condition[J]. Applied Energy, 2019, 254: 113726. DOI:10.1016/j.apenergy.2019.113726.
|
5 |
CAI H C, HAO X, JIANG Y, et al. Degradation evaluation of lithium-ion batteries in plug-In hybrid electric vehicles: An empirical calibration[J]. Batteries, 2023, 9(6): 321. DOI:10.3390/batteries9060321.
|
6 |
WU J, MENG J H, LIN M Q, et al. Lithium-ion battery state of health estimation using a hybrid model with electrochemical impedance spectroscopy[J]. Reliability Engineering & System Safety, 2024, 252: 110450. DOI:10.1016/j.ress.2024.110450.
|
7 |
ZHANG M, YANG D F, DU J X, et al. A review of SOH prediction of Li-ion batteries based on data-driven algorithms[J]. Energies, 2023, 16(7): 3167. DOI:10.3390/en16073167.
|
8 |
CHEN J Y, CHEN D W, HAN X L, et al. State-of-health estimation of lithium-ion battery based on constant voltage charging duration[J]. Batteries, 2023, 9(12): 565. DOI:10.3390/batteries9120565.
|
9 |
YANG J F, CAI Y F, MI C C. State-of-health estimation for lithium-ion batteries based on decoupled dynamic characteristic of constant-voltage charging current[J]. IEEE Transactions on Transportation Electrification, 2022, 8(2): 2070-2079. DOI:10.1109/TTE.2021.3125932.
|
10 |
ZHANG C L, ZHAO S S, YANG Z, et al. A reliable data-driven state-of-health estimation model for lithium-ion batteries in electric vehicles[J]. Frontiers in Energy Research, 2022, 10: 1013800. DOI:10.3389/fenrg.2022.1013800.
|
11 |
刘伟霞, 田勋, 肖家勇, 等. 基于混合模型及LSTM的锂电池SOH与剩余寿命预测[J]. 储能科学与技术, 2021, 10(2): 689-694. DOI: 10.19799/j.cnki.2095-4239.2020.0382.
|
|
LIU W X, TIAN X, XIAO J Y, et al. Estimation of SOH and remaining life of lithium batteries based on a combination model and long short-term memory[J]. Energy Storage Science and Technology, 2021, 10(2): 689-694. DOI: 10.19799/j.cnki.2095-4239.2020.0382.
|
12 |
李放, 闵永军, 王琛, 等. 基于充电过程的锂电池SOH估计和RUL预测[J]. 储能科学与技术, 2022, 11(10): 3316-3327. DOI: 10.19799/j.cnki.2095-4239.2022.0165.
|
|
LI F, MIN Y J, WANG C, et al. State of health estimation and remaining useful life predication of lithium batteries using charging process[J]. Energy Storage Science and Technology, 2022, 11(10): 3316-3327. DOI: 10.19799/j.cnki.2095-4239.2022.0165.
|
13 |
ZHANG J A, WANG P, GONG Q R, et al. SOH estimation of lithium-ion batteries based on least squares support vector machine error compensation model[J]. Journal of Power Electronics, 2021, 21(11): 1712-1723. DOI:10.1007/s43236-021-00307-8.
|
14 |
CHEN K, LI J L, LIU K, et al. State of health estimation for lithium-ion battery based on particle swarm optimization algorithm and extreme learning machine[J]. Green Energy and Intelligent Transportation, 2024, 3(1): 100151. DOI:10.1016/j.geits. 2024.100151.
|
15 |
ZHANG C L, LUO L J, YANG Z, et al. Battery SOH estimation method based on gradual decreasing current, double correlation analysis and GRU[J]. Green Energy and Intelligent Transportation, 2023, 2(5): 100108. DOI:10.1016/j.geits.2023.100108.
|
16 |
GU X Y, SEE K W, LI P H, et al. A novel state-of-health estimation for the lithium-ion battery using a convolutional neural network and transformer model[J]. Energy, 2023, 262: 125501. DOI:10.1016/j.energy.2022.125501.
|
17 |
张朝龙, 赵筛筛, 何怡刚. 基于信息熵与PSO-LSTM的锂电池组健康状态估计方法[J]. 机械工程学报, 2022, 58(10): 180-190. DOI: 10.3901/JME.2022.10.180.
|
|
ZHANG C L, ZHAO S S, HE Y G. State-of-health estimate for lithium-ion battery using information entropy and PSO-LSTM[J]. Journal of Mechanical Engineering, 2022, 58(10): 180-190. DOI: 10.3901/JME.2022.10.180.
|
18 |
HOU W H, LU Y, OU Y, et al. Recent advances in electrolytes for high-voltage cathodes of lithium-ion batteries[J]. Transactions of Tianjin University, 2023, 29(2): 120-135. DOI:10.1007/s12209-023-00355-0.
|