1 |
TANG C Y, CHEN P T, JHENG J H. Bidirectional power flow control and hybrid charging strategies for three-phase PV power and energy storage systems[J]. IEEE Transactions on Power Electronics, 2021, 36(11): 12710-12720. DOI: 10.1109/TPEL.2021. 3083366.
|
2 |
李昌豪, 汪书苹, 金翼, 等. 变电站磷酸铁锂电池的消防安全技术研究进展[J]. 电源技术, 2021, 45(7): 956-959.
|
|
LI C H, WANG S P, JIN Y, et al. Research progress on fire safety technology of lithium iron phosphate battery in substation[J]. Chinese Journal of Power Sources, 2021, 45(7): 956-959.
|
3 |
曹勇, 杨大鹏, 朱清, 等. 大容量磷酸铁锂电池模组热失控研究[J]. 储能科学与技术, 2024, 13(7): 2462-2469. DOI: 10.19799/j.cnki. 2095-4239.2024.0108.
|
|
CAO Y, YANG D P, ZHU Q, et al. Thermal runaway of large capacity lithium-iron phosphate battery pack[J]. Energy Storage Science and Technology, 2024, 13(7): 2462-2469. DOI: 10.19799/j.cnki.2095-4239.2024.0108.
|
4 |
姚斌, 滕国鹏, 刘晓梅, 等. 磷酸铁锂电池高温存储性能衰减机理[J]. 电源技术, 2018, 42(7): 955-958.
|
|
YAO B, TENG G P, LIU X M, et al. Mechanism of calendar life fading of high temperature stored LiFePO4-based Li-ion cells[J]. Chinese Journal of Power Sources, 2018, 42(7): 955-958.
|
5 |
NAUMANN M, SCHIMPE M, KEIL P, et al. Analysis and modeling of calendar aging of a commercial LiFePO4/graphite cell[J]. Journal of Energy Storage, 2018, 17: 153-169. DOI: 10.1016/j.est.2018.01.019.
|
6 |
朱艳丽, 徐艺博, 王聪杰, 等. 不同荷电状态磷酸铁锂电池热失控温度与产气特性分析[J]. 安全与环境学报, 2024, 24(1): 143-151. DOI: 10.13637/j.issn.1009-6094.2023.0588.
|
|
ZHU Y L, XU Y B, WANG C J, et al. Analysis of thermal runaway temperature and gas production characteristics of lithium iron phosphate batteries with different states of charge[J]. Journal of Safety and Environment, 2024, 24(1): 143-151. DOI: 10.13637/j.issn.1009-6094.2023.0588.
|
7 |
DENG J, CHEN B H, LU J Z, et al. Thermal runaway and combustion characteristics, risk and hazard evaluation of lithium-iron phosphate battery under different thermal runaway triggering modes[J]. Applied Energy, 2024, 368: 123451. DOI: 10.1016/j.apenergy.2024.123451.
|
8 |
SONG L F, WANG S P, JIA Z Z, et al. A comprehensive investigation of thermal runaway critical temperature and energy for lithium iron phosphate batteries[J]. Journal of Energy Storage, 2024, 86: 111162. DOI: 10.1016/j.est.2024.111162.
|
9 |
GUAN T, SUN S, GAO Y Z, et al. The effect of elevated temperature on the accelerated aging of LiCoO2/mesocarbon microbeads batteries[J]. Applied Energy, 2016, 177: 1-10. DOI: 10.1016/j.apenergy.2016.05.101.
|
10 |
ATTIA P M, CHUEH W C, HARRIS S J. Revisiting the t0.5 dependence of SEI growth[J]. Journal of the Electrochemical Society, 2020, 167(9): 090535. DOI: 10.1149/1945-7111/ab8ce4.
|
11 |
LIU P, WANG J, HICKS-GARNER J, et al. Aging mechanisms of LiFePO4 batteries deduced by electrochemical and structural analyses[J]. Journal of the Electrochemical Society, 2010, 157(4): A499. DOI: 10.1149/1.3294790.
|
12 |
DOOSE S, HAHN A, FISCHER S, et al. Comparison of the consequences of state of charge and state of health on the thermal runaway behavior of lithium ion batteries[J]. Journal of Energy Storage, 2023, 62: 106837. DOI: 10.1016/j.est.2023.106837.
|