[1] |
陆洋, 闫帅帅, 马骁, 等. 低温锂电池电解液的研究与应用[J]. 储能科学与技术, 2024, 13(7): 2224-2242. DOI: 10.19799/j.cnki.2095-4239. 2024.0313.
|
|
LU Y, YAN S S, MA X, et al. Low-temperature electrolytes and their application in lithium batteries[J]. Energy Storage Science and Technology, 2024, 13(7): 2224-2242. DOI: 10.19799/j.cnki.2095-4239.2024.0313.
|
[2] |
DIEDERICHSEN K M, MCSHANE E J, MCCLOSKEY B D. Promising routes to a high Li+ transference number electrolyte for lithium ion batteries[J]. ACS Energy Letters, 2017, 2(11): 2563-2575. DOI: 10.1021/acsenergylett.7b00792.
|
[3] |
ZHOU P, ZHANG X K, XIANG Y, et al. Strategies to enhance Li+ transference number in liquid electrolytes for better lithium batteries[J]. Nano Research, 2023, 16(6): 8055-8071. DOI: 10. 1007/s12274-022-4833-1.
|
[4] |
YAO N, YU L G, FU Z H, et al. Probing the origin of viscosity of liquid electrolytes for lithium batteries[J]. Angewandte Chemie International Edition, 2023, 62(41): e202305331. DOI: 10.1002/anie. 202305331.
|
[5] |
CHEN J E, ZHANG H, FANG M M, et al. Design of localized high-concentration electrolytes via donor number[J]. ACS Energy Letters, 2023, 8(4): 1723-1734. DOI: 10.1021/acsenergylett.3c00004.
|
[6] |
REN F H, LI Z D, CHEN J H, et al. Solvent-diluent interaction-mediated solvation structure of localized high-concentration electrolytes[J]. ACS Applied Materials & Interfaces, 2022, 14(3): 4211-4219. DOI: 10.1021/acsami.1c21638.
|
[7] |
PARK E, PARK J, LEE K, et al. Exploiting the steric effect and low dielectric constant of 1,2-dimethoxypropane for 4.3 V lithium metal batteries[J]. ACS Energy Letters, 2023, 8(1): 179-188.
|
[8] |
HOSSAIN M J, WU Q S, MARIN BERNARDEZ E J, et al. The relationship between ionic conductivity and solvation structures of localized high-concentration fluorinated electrolytes for lithium-ion batteries[J]. The Journal of Physical Chemistry Letters, 2023, 14(34): 7718-7731. DOI: 10.1021/acs.jpclett.3c01453.
|
[9] |
PEREZ BELTRAN S, CAO X, ZHANG J G, et al. Influence of diluent concentration in localized high concentration electrolytes: Elucidation of hidden diluent-Li+ interactions and Li+ transport mechanism[J]. Journal of Materials Chemistry A, 2021, 9(32): 17459-17473. DOI: 10.1039/D1TA04737J.
|
[10] |
EFAW C M, WU Q S, GAO N, et al. Localized high-concentration electrolytes get more localized through micelle-like structures[J]. Nature Materials, 2023, 22(12): 1531-1539. DOI: 10.1038/s41563-023-01700-3.
|
[11] |
CAO X, ZOU L F, MATTHEWS B E, et al. Optimization of fluorinated orthoformate based electrolytes for practical high-voltage lithium metal batteries[J]. Energy Storage Materials, 2021, 34: 76-84. DOI: 10.1016/j.ensm.2020.08.035.
|
[12] |
LI Q, LIU G, CHENG H R, et al. Low-temperature electrolyte design for lithium-ion batteries: Prospect and challenges[J]. Chemistry-A European Journal, 2021, 27(64): 15842-15865. DOI: 10.1002/chem.202101407.
|
[13] |
CAO X, JIA H, XU W, et al. Review—Localized high-concentration electrolytes for lithium batteries[J]. Journal of the Electrochemical Society, 2021, 168(1): 010522. DOI: 10.1149/1945-7111/abd60e.
|
[14] |
MARTÍNEZ L, ANDRADE R, BIRGIN E G, et al. PACKMOL: A package for building initial configurations for molecular dynamics simulations[J]. Journal of Computational Chemistry, 2009, 30(13): 2157-2164. DOI: 10.1002/jcc.21224.
|
[15] |
BERENDSEN H J C, VAN DER SPOEL D, VAN DRUNEN R. GROMACS: A message-passing parallel molecular dynamics implementation[J]. Computer Physics Communications, 1995, 91(1/2/3): 43-56. DOI: 10.1016/0010-4655(95)00042-E.
|
[16] |
DODDA L S, CABEZA DE VACA I, TIRADO-RIVES J, et al. LigParGen web server: An automatic OPLS-AA parameter generator for organic ligands[J]. Nucleic Acids Research, 2017, 45(W1): W331-W336. DOI: 10.1093/nar/gkx312.
|
[17] |
PODGORŠEK A, SALAS G, CAMPBELL P S, et al. Influence of ionic association, transport properties, and solvation on the catalytic hydrogenation of 1,3-cyclohexadiene in ionic liquids[J]. The Journal of Physical Chemistry B, 2011, 115(42): 12150-12159. DOI: 10.1021/jp206619c.
|
[18] |
NOSÉ S. A unified formulation of the constant temperature molecular dynamics methods[J]. The Journal of Chemical Physics, 1984, 81(1): 511-519. DOI: 10.1063/1.447334.
|
[19] |
BERENDSEN H J C, POSTMA J P M, VAN GUNSTEREN W F, et al. Molecular dynamics with coupling to an external bath[J]. The Journal of Chemical Physics, 1984, 81(8): 3684-3690. DOI: 10.1063/1.448118.
|
[20] |
HUMPHREY W, DALKE A, SCHULTEN K. VMD: Visual molecular dynamics[J]. Journal of Molecular Graphics, 1996, 14(1): 33-38. DOI: 10.1016/0263-7855(96)00018-5.
|
[21] |
WANG Y K, LI Z M, HOU Y P, et al. Emerging electrolytes with fluorinated solvents for rechargeable lithium-based batteries[J]. Chemical Society Reviews, 2023, 52(8): 2713-2763. DOI: 10. 1039/D2CS00873D.
|
[22] |
YAMADA Y, WANG J H, KO S, et al. Advances and issues in developing salt-concentrated battery electrolytes[J]. Nature Energy, 2019, 4(4): 269-280. DOI: 10.1038/s41560-019-0336-z.
|
[23] |
SELF J, FONG K D, PERSSON K A. Transport in superconcentrated LiPF6 and LiBF4/propylene carbonate electrolytes[J]. ACS Energy Letters, 2019, 4(12): 2843-2849.
|
[24] |
DOKKO K, WATANABE D, UGATA Y, et al. Direct evidence for Li ion hopping conduction in highly concentrated sulfolane-based liquid electrolytes[J]. The Journal of Physical Chemistry B, 2018, 122(47): 10736-10745. DOI: 10.1021/acs.jpcb.8b09439.
|
[25] |
YAO N, CHEN X, SUN S Y, et al. Identifying the lithium bond and lithium ionic bond in electrolytes[J]. Chem, 2025, 11(1): 102254. DOI: 10.1016/j.chempr.2024.07.016.
|
[26] |
何一涛, 丁飞, 林立, 等. 电极界面浓差极化对锂金属沉积的影响[J]. 物理化学学报, 2021, 37(2): 157-163. DOI: 10.3866/PKU.WHXB202009001.
|
|
HE Y T, DING F, LIN L, et al. Influence of interfacial concentration polarization on lithium metal electrodeposition[J]. Acta Physico-Chimica Sinica, 2021, 37(2): 157-163. DOI: 10.3866/PKU.WHXB202009001.
|