| [1] |
SHEN Z H, QIN M L, XIONG F, et al. Nanocellulose-based composite phase change materials for thermal energy storage: Status and challenges[J]. Energy & Environmental Science, 2023, 16(3): 830-861. DOI: 10.1039/D2EE04063H.
|
| [2] |
LI Z R, HU N, FAN L W. Nanocomposite phase change materials for high-performance thermal energy storage: A critical review[J]. Energy Storage Materials, 2023, 55: 727-753. DOI: 10.1016/j.ensm.2022.12.037.
|
| [3] |
JAYATHUNGA D S, KARUNATHILAKE H P, NARAYANA M, et al. Phase change material (PCM) candidates for latent heat thermal energy storage (LHTES) in concentrated solar power (CSP) based thermal applications—A review[J]. Renewable and Sustainable Energy Reviews, 2024, 189: 113904. DOI: 10.1016/j.rser.2023.113904.
|
| [4] |
KENISARIN M M. High-temperature phase change materials for thermal energy storage[J]. Renewable and Sustainable Energy Reviews, 2010, 14(3): 955-970. DOI: 10.1016/j.rser.2009.11.011.
|
| [5] |
DING W J, BAUER T. Progress in research and development of molten chloride salt technology for next generation concentrated solar power plants[J]. Engineering, 2021, 7(3): 334-347. DOI: 10.1016/j.eng.2020.06.027.
|
| [6] |
TIAN H Q, ZHANG W G, KOU Z Y. Molecular dynamics simulations on the structure and thermal property of SiO2/(LiCl-KCl) nanofluids for high temperature thermal energy storage[J]. Ceramics International, 2025, 51(4): 5125-5134. DOI: 10.1016/j.ceramint.2024.11.486.
|
| [7] |
AHMAD ALJAERANI H, SAMYKANO M, SAIDUR R, et al. Nanoparticles as molten salts thermophysical properties enhancer for concentrated solar power: A critical review[J]. Journal of Energy Storage, 2021, 44: 103280. DOI: 10.1016/j.est.2021.103280.
|
| [8] |
ABDELRAZIK A S, SAYED M A M, OMAR A M A, et al. Potential of molecular dynamics in the simulation of nanofluids properties and stability[J]. Journal of Molecular Liquids, 2023, 381: 121757. DOI: 10.1016/j.molliq.2023.121757.
|
| [9] |
田禾青, 周俊杰, 郭茶秀. 熔盐储热材料比热容强化的研究进展[J]. 化工进展, 2020, 39(2): 584-595. DOI: 10.16085/j.issn.1000-6613.2019-0798.
|
|
TIAN H Q, ZHOU J J, GUO C X. Progress of specific heat enhancement of molten salt thermal energy storage materials[J]. Chemical Industry and Engineering Progress, 2020, 39(2): 584-595. DOI: 10.16085/j.issn.1000-6613.2019-0798.
|
| [10] |
TIAN H Q, DU L C, HUANG C L, et al. Enhanced specific heat capacity of binary chloride salt by dissolving magnesium for high-temperature thermal energy storage and transfer[J]. Journal of Materials Chemistry A, 2017, 5(28): 14811-14818. DOI: 10.1039/C7TA04169A.
|
| [11] |
SHIN D, BANERJEE D. Enhancement of specific heat capacity of high-temperature silica-nanofluids synthesized in alkali chloride salt eutectics for solar thermal-energy storage applications[J]. International Journal of Heat and Mass Transfer, 2011, 54(5/6): 1064-1070. DOI: 10.1016/j.ijheatmasstransfer.2010.11.017.
|
| [12] |
HAN D M, GUENE LOUGOU B, XU Y T, et al. Thermal properties characterization of chloride salts/nanoparticles composite phase change material for high-temperature thermal energy storage[J]. Applied Energy, 2020, 264: 114674. DOI: 10.1016/j.apenergy. 2020.114674.
|
| [13] |
DING J, PAN G, DU L C, et al. Theoretical prediction of the local structures and transport properties of binary alkali chloride salts for concentrating solar power[J]. Nano Energy, 2017, 39: 380-389. DOI: 10.1016/j.nanoen.2017.07.020.
|
| [14] |
NI H O, WU J, SUN Z, et al. Insight into the viscosity enhancement ability of Ca(NO3)2 on the binary molten nitrate salt: A molecular dynamics simulation study[J]. Chemical Engineering Journal, 2019, 377: 120029. DOI: 10.1016/j.cej.2018.09.190.
|
| [15] |
CUI L, YU Q S, WEI G S, et al. Mechanisms for thermal conduction in molten salt-based nanofluid[J]. International Journal of Heat and Mass Transfer, 2022, 188: 122648. DOI: 10.1016/j.ijheatmasstransfer.2022.122648.
|
| [16] |
DING J, DU L C, PAN G, et al. Molecular dynamics simulations of the local structures and thermodynamic properties on molten alkali carbonate K2CO3[J]. Applied Energy, 2018, 220: 536-544. DOI: 10.1016/j.apenergy.2018.03.116.
|
| [17] |
JO B, BANERJEE D. Effect of solvent on specific heat capacity enhancement of binary molten salt-based carbon nanotube nanomaterials for thermal energy storage[J]. International Journal of Thermal Sciences, 2015, 98: 219-227. DOI: 10.1016/j.ijthermalsci.2015.07.020.
|
| [18] |
刘杰庭. 碱金属氯化物熔盐基纳米流体的热物性分子动力学模拟研究[D]. 北京: 华北电力大学, 2022. DOI: 10.27139/d.cnki.ghbdu. 2022.000127.
|
|
LIU J T. Molecular dynamics simulation of thermophysical properties of alkali metal chloride molten salt-based nanofluids[D]. Beijing: North China Electric Power University, 2022. DOI: 10.27139/d.cnki.ghbdu.2022.000127.
|
| [19] |
田禾青, 寇朝阳, 周俊杰, 等. LiCl-KCl熔盐纳米流体结构和热物性的分子动力学模拟[J]. 储能科学与技术, 2023, 12(3): 654-660. DOI: 10.19799/j.cnki.2095-4239.2022.0683.
|
|
TIAN H Q, KOU Z Y, ZHOU J J, et al. Molecular dynamics simulation of structure and thermal properties of LiCl-KCl molten salt nanofluids[J]. Energy Storage Science and Technology, 2023, 12(3): 654-660. DOI: 10.19799/j.cnki.2095-4239.2022.0683.
|
| [20] |
CACCAMO C, DIXON M. Molten alkali-halide mixtures: A molecular-dynamics study of Li/KCl mixtures[J]. Journal of Physics C: Solid State Physics, 1980, 13(10): 1887. DOI: 10. 1088/0022-3719/13/10/009.
|
| [21] |
LARSEN B, FØRLAND T, SINGER K. A Monte Carlo calculation of thermodynamic properties for the liquid NaCl+KCl mixture[J]. Molecular Physics, 1973, 26(6): 1521-1532. DOI: 10.1080/0026 8977300102671.
|
| [22] |
MÜLLER-PLATHE F, BORDAT P. Reverse non-equilibrium molecular dynamics[M]//Novel Methods in Soft Matter Simulations. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004: 310-326. DOI: 10.1007/978-3-540-39895-0_10.
|