储能科学与技术 ›› 2025, Vol. 14 ›› Issue (11): 4162-4169.doi: 10.19799/j.cnki.2095-4239.2025.0492

• 储能材料与器件 • 上一篇    下一篇

Al2O3/LiCl-NaCl-KCl)熔盐纳米流体储热材料的分子动力学模拟

袁洪跃1,2(), 蒋晶2, 田禾青2()   

  1. 1.河南机电职业学院,河南 郑州 451192
    2.郑州大学机械与动力工程学院,河南 郑州 450001
  • 收稿日期:2025-05-26 修回日期:2025-06-11 出版日期:2025-11-28 发布日期:2025-11-24
  • 通讯作者: 田禾青 E-mail:81084902@qq.com;tianhq@zzu.edu.cn
  • 作者简介:袁洪跃(1984—),男,博士,讲师,研究方向为材料加工工程,E-mail:81084902@qq.com
  • 基金资助:
    河南省新能源高效利用低碳技术工程研究中心开放课题(JDDQ2024-02)

Molecular dynamics simulation of Al2O3/LiCl-NaCl-KCl molten salt nanofluid for thermal energy storage

Hongyue YUAN1,2(), Jing JIANG2, Heqing TIAN2()   

  1. 1.Henan Mechanical & Electrical Vocational College, Zhengzhou 451192, Henan, China
    2.School of Mechanical and Power Engineering, Zhengzhou University, Zhengzhou 450001, Henan, China
  • Received:2025-05-26 Revised:2025-06-11 Online:2025-11-28 Published:2025-11-24
  • Contact: Heqing TIAN E-mail:81084902@qq.com;tianhq@zzu.edu.cn

摘要:

氯化物熔盐由于成本低、储热密度高等优点成为最具发展潜力的高温蓄热材料,但氯化物熔盐也兼具比热容低和导热性弱的缺陷,因此开展氯化物熔盐的热物性强化工作迫在眉睫。本工作选择LiCl-NaCl-KCl三元共晶熔盐作为储热基材,Al2O3纳米颗粒作为掺杂剂,采用分子动力学模拟方法构建熔盐纳米流体微观模型,研究了温度和纳米颗粒对熔盐微观结构和热物性的影响,并分析了熔盐纳米流体的“构-效”关系。结果表明,在673~1073 K温度范围内,熔盐及其纳米流体的密度、黏度和热导率均随温度的升高而降低,但纳米颗粒的加入增加了熔盐的密度、黏度和热导率。温度升高使体系径向分布函数第一峰的位置逐渐减小,峰的强度逐渐减弱,中心离子周围的粒子数密度减小,配位数下降,粒子之间的缔合作用减弱,自扩散系数增大,熔盐的扩散能力增强。但纳米颗粒使体系阴阳离子间的缔合作用增强,离子间距离减小,配位数增大,自扩散系数减小,体系的扩散能力减弱。

关键词: 熔盐, Al2O3, 微观结构, 热物性, 分子动力学

Abstract:

Chloride salts are promising high-temperature thermal energy storage materials due to their low cost and high heat storage density. However, their low specific heat capacity and poor thermal conductivity limit their performance, necessitating enhancement strategies. In this study, LiCl-NaCl-KCl ternary eutectic salt was selected as the storage medium, and Al2O3 nanoparticles were introduced as dopants. A microscopic model of the molten salt nanofluid was constructed using molecular dynamics simulation to investigate the effects of temperature and nanoparticles on the microstructure and thermophysical properties. The structure-property relationship of the nanofluid was analyzed. Results show that, within the temperature range of 673—1073 K, the density, viscosity, and thermal conductivity of both the base salt and nanofluid decrease with increasing temperature. The addition of nanoparticles, however, increases these properties. As temperature rises, the first peak position of the radial distribution function shifts to shorter distances and its intensity weakens, indicating reduced particle number density around central ions, lower coordination numbers, weakened interparticle association, and increased self-diffusion coefficients, thereby enhancing the diffusion ability of the molten salt. Conversely, nanoparticles strengthen the association between cations and anions, shorten ion-ion distances, increase coordination numbers, and reduce self-diffusion coefficients, ultimately weakening the system's diffusion ability.

Key words: molten salt, Al2O3, microstructure, thermophysical property, molecular dynamics

中图分类号: