| [1] |
JIN Y, SUN S X, OU M Y, et al. High-performance hard carbon anode: Tunable local structures and sodium storage mechanism[J]. ACS Applied Energy Materials, 2018, 1(5): 2295-2305. DOI: 10.1021/acsaem.8b00354.
|
| [2] |
PHOGAT P, RAWAT S, DEY S, et al. Advancements and challenges in sodium-ion batteries: A comprehensive review of materials, mechanisms, and future directions for sustainable energy storage[J]. Journal of Alloys and Compounds, 2025, 1020: 179544. DOI: 10.1016/j.jallcom.2025.179544.
|
| [3] |
MU B Y, CHI C L, YANG X H, et al. A review of hard carbon anodes for rechargeable sodium-ion batteries[J]. New Carbon Materials, 2024, 39(5): 796-823. DOI: 10.1016/S1872-5805(24)60884-X.
|
| [4] |
ZHONG B, LIU C, XIONG D Y, et al. Biomass-derived hard carbon for sodium-ion batteries: Basic research and industrial application[J]. ACS Nano, 2024, 18(26): 16468-16488. DOI: 10.1021/acsnano.4c03484.
|
| [5] |
SUN N, ZHAO R, XU M Y, et al. Design advanced nitrogen/oxygen Co-doped hard carbon microspheres from phenolic resin with boosted Na-storage performance[J]. Journal of Power Sources, 2023, 564: 232879. DOI: 10.1016/j.jpowsour.2023.232879.
|
| [6] |
WANG K F, SUN F, SU Y L, et al. Natural template derived porous carbon nanoplate architectures with tunable pore configuration for a full-carbon sodium-ion capacitor[J]. Journal of Materials Chemistry A, 2021, 9(41): 23607-23618. DOI: 10.1039/D1TA04485K.
|
| [7] |
LI X W, WANG H R, LIU X, et al. High-performance pitch-based hard carbon for sodium-ion batteries: Introducing oxygen functional groups and regulating closed pores by adjusting pre-oxidation rate[J]. Journal of Energy Storage, 2025, 108: 114995. DOI: 10.1016/j.est.2024.114995.
|
| [8] |
LIU M K, ZHANG Z, HAN X H, et al. Fabrication of pitch-derived hard carbon via bromination-assisted pyrolysis strategy for sodium-ion batteries[J]. Nanoscale, 2025, 17(13): 8118-8125. DOI: 10.1039/D4NR05322B.
|
| [9] |
WANG J R, XI L, PENG C X, et al. Recent progress in hard carbon anodes for sodium-ion batteries[J]. Advanced Engineering Materials, 2024, 26(8): 2302063. DOI: 10.1002/adem.202302063.
|
| [10] |
XIONG Z Y, YUE L, ZHANG Y, et al. Structural regulation of asphalt-based hard carbon microcrystals based on liquid-phase crosslinking to enhance sodium storage[J]. Journal of Colloid and Interface Science, 2024, 658: 610-616. DOI: 10.1016/j.jcis.2023.12.096.
|
| [11] |
ZHAO G X, XU T Q, ZHAO Y M, et al. Conversion of aliphatic structure-rich coal maceral into high-capacity hard carbons for sodium-ion batteries[J]. Energy Storage Materials, 2024, 67: 103282. DOI: 10.1016/j.ensm.2024.103282.
|
| [12] |
GUO H Y, LI Y Y, WANG C L, et al. Effect of the air oxidation stabilization of pitch on the microstructure and sodium storage of hard carbons[J]. New Carbon Materials, 2021, 36(6): 1073-1078. DOI: 10.1016/S1872-5805(21)60075-6.
|
| [13] |
XIAO K, WANG P Y, BAI J, et al. Deep oxygen-crosslinking and self-coating synergetic engineering on pitch-based hard carbon anode for sodium-ion batteries[J]. Journal of Colloid and Interface Science, 2025, 686: 267-276. DOI: 10.1016/j.jcis.2025.01.220.
|
| [14] |
SUN C, DU W S, SUN Q. N, P co-doping for microstructural regulation of pitch-derived carbon toward high-rate sodium storage[J]. Journal of Alloys and Compounds, 2025, 1022: 179832. DOI: 10.1016/j.jallcom.2025.179832.
|
| [15] |
WU J R, YANG T, SONG Y, et al. Preparation of disordered carbon for alkali metal-ion (lithium, sodium, and potassium) batteries by pitch molecular modification: A review[J]. Carbon, 2024, 221: 118902. DOI: 10.1016/j.carbon.2024.118902.
|
| [16] |
WANG Y W, XIAO N, WANG Z Y, et al. Rational design of high-performance sodium-ion battery anode by molecular engineering of coal tar pitch[J]. Chemical Engineering Journal, 2018, 342: 52-60. DOI: 10.1016/j.cej.2018.01.098.
|
| [17] |
GAO H, DING L, BAI H, et al. Pitch-based hyper-cross-linked polymers with high performance for gas adsorption[J]. Journal of Materials Chemistry A, 2016, 4(42): 16490-16498. DOI: 10.1039/C6TA07033G.
|
| [18] |
WANG J, YAN L, LIU B H, et al. A solvothermal pre-oxidation strategy converting pitch from soft carbon to hard carbon for enhanced sodium storage[J]. Chinese Chemical Letters, 2023, 34(4): 107526. DOI: 10.1016/j.cclet.2022.05.040.
|
| [19] |
XU R, YI Z L, SONG M X, et al. Boosting sodium storage performance of hard carbons by regulating oxygen functionalities of the cross-linked asphalt precursor[J]. Carbon, 2023, 206: 94-104. DOI: 10.1016/j.carbon.2023.02.004.
|
| [20] |
JI Y L, LI S Q, YUAN T, et al. Enhancing the sodium storage performance of hard carbon by constructing thin carbon coatings via esterification reactions[J]. Journal of Colloid and Interface Science, 2025, 677: 719-728. DOI: 10.1016/j.jcis.2024.08.051.
|
| [21] |
CHU Y, ZHANG J, ZHANG Y B, et al. Reconfiguring hard carbons with emerging sodium-ion batteries: A perspective[J]. Advanced Materials, 2023, 35(31): 2212186. DOI: 10.1002/adma.202212186.
|
| [22] |
High-performance hard carbon anode: Tunable local structures and sodium storage mechanism [EB/OL].| ACS Applied Energy Materials, [2024-12-24]. https://pubs.acs.org/doi/10.1021/acsaem.8b00354.
|
| [23] |
ZHANG S H, SUN N, LI X, et al. Closed pore engineering of activated carbon enabled by waste mask for superior sodium storage[J]. Energy Storage Materials, 2024, 66: 103183. DOI: 10.1016/j.ensm.2024.103183.
|
| [24] |
FAN X Y, KONG X R, ZHANG P T, et al. Research progress on hard carbon materials in advanced sodium-ion batteries[J]. Energy Storage Materials, 2024, 69: 103386. DOI: 10.1016/j.ensm.2024.103386.
|
| [25] |
ZHAO Y, CONG Y, NING H, et al. N, P Co-doped pitch derived soft carbon nanoboxes as high-performance anodes for sodium-ion batteries[J]. Journal of Alloys and Compounds, 2022, 918: 165691. DOI: 10.1016/j.jallcom.2022.165691.
|
| [26] |
CHEN X Y, LIU C Y, FANG Y J, et al. Understanding of the sodium storage mechanism in hard carbon anodes[J]. Carbon Energy, 2022, 4(6): 1133-1150. DOI: 10.1002/cey2.196.
|
| [27] |
HE H N, SUN D, TANG Y G, et al. Understanding and improving the initial Coulombic efficiency of high-capacity anode materials for practical sodium ion batteries[J]. Energy Storage Materials, 2019, 23: 233-251. DOI: 10.1016/j.ensm.2019.05.008.
|
| [28] |
REN Q J, WANG J, YAN L, et al. Manipulating free-standing, flexible and scalable microfiber carbon papers unlocking ultra-high initial Coulombic efficiency and storage sodium behavior[J]. Chemical Engineering Journal, 2021, 425: 131656. DOI: 10.1016/j.cej.2021.131656.
|
| [29] |
YU T W, LI G H, DUAN Y, et al. The research and industrialization progress and prospects of sodium ion battery[J]. Journal of Alloys and Compounds, 2023, 958: 170486. DOI: 10.1016/j.jallcom.2023.170486.
|