储能科学与技术 ›› 2025, Vol. 14 ›› Issue (11): 4142-4151.doi: 10.19799/j.cnki.2095-4239.2025.0364

• 储能材料与器件 • 上一篇    下一篇

分子修饰对煤沥青基硬炭材料及其储钠性能的影响

郭世龙1(), 宋金1, 郭佳乐1, 王潇潇1(), 梁可盈2, 王毅林3, 易宗琳3, 谢莉婧3, 卫贤贤2   

  1. 1.太原科技大学化学工程与技术学院
    2.太原科技大学环境与资源学院,山西 太原 030024
    3.中国科学院煤炭化学研究所,中国科学院碳材料重点实验室,山西 太原 030001
  • 收稿日期:2025-04-16 修回日期:2025-05-08 出版日期:2025-11-28 发布日期:2025-11-24
  • 通讯作者: 王潇潇 E-mail:1064818857@qq.com;xxwang@tyust.edu.cn
  • 作者简介:郭世龙(2000—),男,硕士研究生,研究方向为储能材料,E-mail:1064818857@qq.com
  • 基金资助:
    山西省基础研究计划(202203021211203);太原科技大学博士启动基金(20232124);国家自然科学基金青年基金(62304209);山西省青年科技研究基金(20210302123203);中央引导地方科技发展资金项目(YDZJSX2025C027)

Impact of molecular modification on coal-tar-pitch-derived hard carbon for sodium-ion storage

Shilong GUO1(), Jin SONG1, Jiale GUO1, Xiaoxiao WANG1(), Keying LIANG2, Yilin WANG3, Zonglin YI3, Lijing XIE3, Xianxian WEI2   

  1. 1.College of Chemical Engineering and Technology, Taiyuan University of Science and Technology
    2.School of Environment and Resources, Taiyuan University of Science and Technology, Taiyuan 030024, Shanxi, China
    3.Shanxi Key Laboratory of Carbon Materials, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, Shanxi, China
  • Received:2025-04-16 Revised:2025-05-08 Online:2025-11-28 Published:2025-11-24
  • Contact: Xiaoxiao WANG E-mail:1064818857@qq.com;xxwang@tyust.edu.cn

摘要:

目前,开发出适用于钠离子电池(SIBs)负极的材料是其商业化的关键。煤沥青(CTP)作为理想的软炭前体,具有成本低、炭收率高等优势,但是软炭的理论储钠容量较低,无法直接应用于SIBs。对此,本文提出了一种改性策略,通过亲电取代反应将多种基团接枝到沥青分子中,抑制其在炭化过程中的熔融重排,最终得到具有大层间距的硬炭材料。通过傅里叶变换红外光谱(FTIR)、X射线光电子能谱(XPS)分析了改性沥青的官能团含量,借助扫描电子显微镜(SEM)、透射电子显微镜(TEM)、X射线衍射(XRD)、Raman光谱和N2/CO2吸脱附等表征技术,探究了碳材料的形貌、微观结构和孔结构;通过调整交联剂的用量,探究了官能团含量对衍生硬炭结构的影响;通过恒流充放电(GCD)测试了碳材料作为SIBs负极的储钠性能;结合循环伏安(CV)测试和恒流间歇滴定技术(GITT)探究了储钠机理。结果表明,当沥青与交联剂质量比为2∶3时,所制备的衍生硬炭具有最佳的电化学性能,在0.03 A/g下具有291.4 mAh/g的比容量以及93.1%的高首次库仑效率,在1 A/g的电流密度下循环300圈后容量为241.8 mAh/g,容量保持率为95.6%,展现出优异的循环稳定性。这项工作提供了新的沥青改性策略,为从软炭前体制备低成本、高性能的无序炭提供了解决方案。

关键词: 煤沥青, 硬炭, 负极材料, 钠离子电池

Abstract:

Developing suitable anode materials is essential for the commercialization of sodium-ion batteries. Coal tar pitch is an inexpensive soft carbon precursor with a high carbon yield; however, its low theoretical sodium storage capacity limits practical application. In this study, a molecular modification strategy is proposed, involving grafting various functional groups onto pitch molecules via electrophilic substitution reactions. This approach suppresses melting and rearrangement during carbonization, ultimately yielding hard carbon materials with enlarged interlayer spacing. The modified pitch is characterized by FT-IR and XPS to determine functional group composition. The morphology, microstructure, and pore structure of the resulting carbons are investigated using SEM, TEM, XRD, Raman spectroscopy, and N2/CO2 adsorption-desorption analyses. The effect of crosslinker content on the derived hard carbon structure is systematically examined by varying the crosslinking agent dosage. Sodium storage performance is evaluated through galvanostatic charge-discharge (GCD) tests, and the storage mechanism is further elucidated using cyclic voltammetry and the galvanostatic intermittent titration technique. The optimal performance is achieved at a 2:3 pitch/crosslinker ratio, delivering 291.4 mAh/g at 0.03 A/g (93% initial Coulombic efficiency) and 242.6 mAh/g after 300 cycles at 1 A/g with 95.6% retention.

Key words: coal tar pitch, hard carbon, anode, sodium-ion battery

中图分类号: