储能科学与技术 ›› 2025, Vol. 14 ›› Issue (11): 4370-4380.doi: 10.19799/j.cnki.2095-4239.2025.0526

• 储能测试与评价 • 上一篇    下一篇

非高斯噪声条件下的锂电池鲁棒SoE估计

黄兴(), 陈珺(), 刘飞   

  1. 江南大学轻工过程先进控制教育部重点实验室,江苏 无锡 214122
  • 收稿日期:2025-06-03 修回日期:2025-07-29 出版日期:2025-11-28 发布日期:2025-11-24
  • 通讯作者: 陈珺 E-mail:hx1792279290@163.com;chenjun1860@126.com
  • 作者简介:黄兴(2000—),男,硕士研究生,研究方向为锂电池状态估计与安全管理、智能算法等,E-mail:hx1792279290@163.com
  • 基金资助:
    国家自然科学基金(62073154)

Robust state of energy estimation of lithium batteries under non-Gaussian noise conditions

Xing HUANG(), Jun CHEN(), Fei LIU   

  1. Laboratory of Advanced Process Control in Light Industry, Ministry of Education, Jiangnan University, Wuxi 214122, Jiangsu, China
  • Received:2025-06-03 Revised:2025-07-29 Online:2025-11-28 Published:2025-11-24
  • Contact: Jun CHEN E-mail:hx1792279290@163.com;chenjun1860@126.com

摘要:

针对现阶段锂电池能量状态(SoE)估计在非高斯噪声干扰下精度不高、难度大的问题,提出一种基于改进学生t核最大相关熵容积卡尔曼滤波(ITMCCKF)估计方法。首先,为快速准确获取等效电路模型参数,采用沙猫群优化算法(SCSO)进行模型参数辨识。然后,采用容积卡尔曼滤波(CKF)解决非线性估计误差问题,在此基础上引入最大相关熵准则,用学生t核函数替代传统高斯核函数,以充分利用非高斯噪声中的高阶信息。设置不同核参数计算误差权重矩阵,以增强对不同分布特性的非高斯噪声的处理能力,提高估计的准确性。最后,定义由高斯混合噪声、散粒噪声、均匀混合噪声和拉普拉斯噪声组合的3种噪声环境,基于2种温度(常温和0 ℃)下的FUDS、US06、BJDST工况数据进行测试。实验结果表明,与MCCKF算法相比,所提算法在常温时3种噪声环境下各工况的平均均方根估计误差分别降低了50.2%、53.8%、52.8%,在0 ℃时分别降低了50.4%、61.0%、64.1%,验证了所提算法在非高斯噪声环境下具有较好的适用性和鲁棒性。

关键词: 锂电池, 参数辨识, 能量状态, 最大相关熵准则, 容积卡尔曼滤波

Abstract:

To address the challenge of accurately estimating battery state of energy under nonGaussian noise interference, an improved maximum correntropy cubature Kalman filter method based on student's t-kernel (ITMCCKF) is proposed. First, the sand cat swarm optimization algorithm is employed for rapid and accurate identification of equivalent circuit model parameters. Next, the cubature Kalman filter is applied to mitigate nonlinear estimation errors. On this basis, the maximum correntropy criterion is introduced and the traditional Gaussian kernel function is replaced with the student's t-kernel function to leverage higher-order information under non-Gaussian noise. In addition, distinct kernel parameters are set for error weight matrix calculations to enhance the ability to process non-Gaussian noise with varying distribution characteristics and improve estimation accuracy. Finally, three noise environments are constructed, combining Gaussian mixed noise, shot noise, uniform mixed noise, and Laplace noise. Tests were conducted based on the FUDS, US06, and BJDST at 25 ℃ and 0 ℃. Experimental results show that compared with MCCKF algorithms, the average root mean square estimation errors of the proposed algorithm were reduced by 50.2%, 53.8%, and 52.8%, respectively, in the three noise environments at room temperature and by 50.4%, 61.0% and 64.1%, respectively, at 0 ℃. These findings verify the generalization ability and robustness of the proposed algorithm under non-Gaussian noise conditions.

Key words: lithium battery, parameter identification, state of energy (SoE), maximum correntropy criterion, cubature Kalman filter

中图分类号: